W artykule przedstawiono zakłócenia spotykane w pracy przekrawacza rotacyjnego. Skupiono się na tematyce uszkodzeń podzespołów elektrycznych, jak np. enkoder. Zaprezentowano również zagadnienia teoretyczne dotyczące systemów diagnostycznych, opartych na systemach sztucznej inteligencji – sieci neuronowe. Omówiono prostą metodę diagnostyczną, wykorzystującą statystykę w aplikacji tekturnicy.
EN
The article presents the disturbances encountered in the operation of a rotary sheeter, and focuses on damage to electrical components, such as an encoder. Theoretical issues of diagnostic systems based on artificial intelligence systems – neural networks are also presented. A simple diagnostic method was presented, based on statistics in the corrugator application.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, a method for determining the soil pore size distribution, constituting the subject of the presented investigations, is proposed. A research study was conducted using image analysis algorithms, and in turn, nonparametric statistical techniques. The results and further work will be discussed in section four. The purpose of this investigation is to discover the relationship between the pore size and volume of the corresponding pores. The algorithm presented here is based on the theory of statistical kernel estimators. This frees it of assumptions in regard to the form of regression function. The approach is universal, and can be successfully applied for many tasks in data mining, where arbitrary assumptions concerning the form of regression function are not recommended.
PL
Celem niniejszego artykułu jest zaprezentowanie procedury wyznaczania rozkładu wielkości porów w agregatach glebowych. Do scharakteryzowania zależności pomiędzy badanymi zmiennymi wykorzystana zostanie funkcja regresji. W przeprowadzonych badaniach zastosowano algorytmy analizy obrazów cyfrowych oraz metodykę statystycznych estymatorów jądrowych. Przedstawiona metoda umożliwia uzyskanie właściwej charakterystyki rozkładu wielkości porów i może stanowić efektywne narzędzie stosowane w wielu zagadnieniach eksploracji danych. Jako model nieparametryczny, nie wymaga założeń dotyczących kształtu zależności funkcyjnej między rozpatrywanymi zmiennymi.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.