Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ensemble technique
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Internet of Things (IoT) has experienced significant growth and plays a crucial role in daily activities. However, along with its development, IoT is very vulnerable to attacks and raises concerns for users. The Intrusion Detection System (IDS) operates efficiently to detect and identify suspicious activities within the network. The primary source of attacks originates from external sources, specifically from the internet attempting to transmit data to the host network. IDS can identify unknown attacks from network traffic and has become one of the most effective network security. Classification is used to distinguish between normal class and attacks in binary classification problem. As a result, there is a rise in the false positive rates and a decrease in the detection accuracy during the model's training. Based on the test results using the ensemble technique with the ensemble learning XGBoost and LightGBM algorithm, it can be concluded that both binary classification problems can be solved. The results using these ensemble learning algorithms on the ToN IoT Dataset, where binary classification has been performed by combining multiple devices into one, have demonstrated improved accuracy. Moreover, this ensemble approach ensures a more even distribution of accuracy across each device, surpassing the findings of previous research.
2
Content available remote Multiple SVMs Modelling Method for Fault Diagnosis of Power Transformers
75%
EN
For enhancing the accuracy of fault diagnosis for power transformers, a multiple SVMs scheme is proposed in this paper. In this scheme, SVM is used to establish the base classifier for its good performance and fast learning speed. Secondly, the several base classifiers based on single SVM will be combined by consulting ensemble techniques. And then a multiple SVM s method is obtained. The real gas records data from a power company is used to establish fault diagnosis system for power transformers based on the new multiple SVM s method. For comparison, the conventional methods are used to build fault diagnosis models by the same data. The experiments demonstrate the new multiple SVMs method has the best performance in both learning ability aspect and generalization ability aspect for fault diagnosis of power transformers.
PL
Zaproponowano schemat SVM (support vector machine) w celu poprawy dokładności diagnostyki transformatorów mocy. W pprównaniu do metod konwencjonalnych proponowana metoda ma możliwość uczenia się i efektywnego wykorzystania bazy danych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.