We prove that an n-dimensional compactum X cannot be embedded into the Cartesian product of n curves if there is a group G such that [H^1] (X;G) = 0 and [H^n](X;G) [is not equal to] O.
Existing Word Sense Disambiguation (WSD) techniques have limits in exploring word-context relationships since they only deal with the effective use ofword embedding, lexical-based information via WordNet, or the precision ofclustering algorithms. In order to overcome this limitation, the study suggestsa unique hybrid methodology that makes use of context embedding based on center-embedding in order to capture semantic subtleties and utilizing with atwo-level K-means clustering algorithm. Such generated context embedding,producing centroids that serve as representative points for semantic information inside clusters. Additionally, go with such captured cluster- centres in thenested levels of clustering process, locate groups of linked context words andcategorize them according to their word meanings that effectively manage polysemy/homonymy as well as detect minute differences in meaning. Our proposedapproach offers a substantial improvement over traditional WSD methods byharnessing the power of center-embedding in context representation, enhancingthe precision of clustering and ultimately overcoming existing limitations incontext-based sense disambiguation.
A generalized s-star, s ≥ 1, is a tree with a root Z of degree s; all other vertices have degree ≤ 2. $S_i$ denotes a generalized 3-star, all three maximal paths starting in Z have exactly i+1 vertices (including Z). Let 𝕄 be a surface of Euler characteristic χ(𝕄) ≤ 0, and m(𝕄):= ⎣(5 + √{49-24χ(𝕄 )})/2⎦. We prove: (1) Let k ≥ 1, d ≥ m(𝕄) be integers. Each polyhedral map G on 𝕄 with a k-path (on k vertices) contains a k-path of maximum degree ≤ d in G or a generalized s-star T, s ≤ m(𝕄), on d + 2- m(𝕄) vertices with root Z, where Z has degree ≤ k·m(𝕄) and the maximum degree of T∖{Z} is ≤ d in G. Similar results are obtained for the plane and for large polyhedral maps on 𝕄.. (2) Let k and i be integers with k ≥ 3, 1 ≤ i ≤ [k/2]. If a polyhedral map G on 𝕄 with a large enough number of vertices contains a k-path then G contains a k-path or a 3-star $S_i$ of maximum degree ≤ 4(k+i) in G. This bound is tight. Similar results hold for plane graphs.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The following problem of Markus and Yamabe is answered affirmatively: Let f be a local diffeomorphism of the euclidean plane whose jacobian matrix has negative trace everywhere. If f(0) = 0, is it true that 0 is a global attractor of the ODE dx/dt = f(x)? An old result of Olech states that this is equivalent to the question if such an f is injective. Here the problem is treated in the latter form by means of an investigation of the behaviour of f near infinity.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Niniejszy raport stanowi omówienie Teorii Reprezentacji Dyskursu (w skrócie DRT) w postaci przedstawionej przez Kampa i Reylego (1993). Prezentowana jest zarówno podstawowa wersja teorii, jak i dwa jej rozszerzenia: jedno dotyczące reprezentacji liczby mnogiej (znaczniki zbiorowe) i rozszerzonych kwantyfikatorów (DRT_Pl), drugie kwestii związanych z czasem i aspektem (DRT_T). Przedstawiona jest także translacja wersji podstawowej na rachunek predykatów I rzędu. Raport skupia się na analizie własności DRT względem oryginalnej semantyki Kampa i Reylego opartej na pojęciu osadzeń wraz z pokazaniem, które z tych własności przenoszą się na zmodyfikowane wersje teorii DRT_Pl i DRT_T. Wykazujemy także, że wiele tautologii rachunku zdań zachowuje swą ważność po przeformułowaniu ich na język DRT. Na koniec dokonano krótkiego porównania omawianej semantyki z późniejszą semantyką (statyczną) opisaną przez van Eijcka i Kampa (1997).
EN
The present report contains a discussion of Discourse Representation Theory (DRT) as formulated in Kamp and Reyle (1993). Apart form the basie version of the theory, the report deser ibes its two extensions: the first concerning representation of plurals and generalized quan-tifiers (DRTpi), the second concerning tense and aspect (DRTy). A translation of the basie version into the first order predicate calculus is described, too. The main focus of the report is an analysis of the properties of DRT with regard to the original Kamp and Reyle's semantics based on the notion of embeddings. Next, the report shows which of these properties carry over to the two modified versions of the theory, i.e.,DRTp; and DRTx- We show also that many of the tautologies of the propositional calculus arę valid after their transposition to the DRT language. Finally, a short comparison of the DRT semantics considered here with the later (static) semantics discussed by van Eijck and Kamp (1997).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.