Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  elektrookulogram
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote An improved MAMA-EMD for the automatic removal of EOG artifacts
100%
EN
The separation of electrooculogram (EOG) and electroencephalogram (EEG) is a potential problem in brain-computer interface (BCI). Especially, it is necessary to accurately remove EOG, as a disturbance, from the measured EEG in brain disease diagnosis, EEG-based rehabilitation systems, etc. Due to the interaction between the eye and periocular musculature, a multipoint spike is often produced in EEG for each ocular activity. Masking-aided minimum arclength empirical mode decomposition (MAMA-EMD) was developed to robustly decompose time series with impulse-like noise. However, the decomposition performance of MAMA-EMD was limited in the case of one impulse with multiple contiguous spike points. In this paper, MAMA-EMD was improved (called IMAMA-EMD) by supplementing the minimum arclength criterion, and it was combined with kernel independent component analysis (KICA), yielding an automatic EOG artifact removal method, denoted as KIIMME. The multi-channel contaminated EEG signals were separated into several independent components (ICs) by KICA. Then, IMAMA-EMD was applied to the EOG-related ICs decomposition to generate a set of inherent mode functions (IMFs), the low frequency ones, which have higher correlation with EOG components, were removed, and the others were employed to construct ‘clean’ EEG. The proposed KIIMME was evaluated and compared with other methods on semisimulated and real EEG data. Experimental results demonstrated that IMAMA-EMD effectively eliminated the influence of multipoint spike on sifting process, and KIIMME improved the removal accuracy of EOG artifacts from EEG while retaining more useful neural data. This improvement is of great significance to research on brain science as well as BCI.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.