W pracy przedstawiono metodykę badań oraz wyniki eksperymentalne prezentujące własności cykliczne izotropowych elastomerów magnetoreologicznych. Testowane materiały zbudowane były z matrycy z elastomeru termoplastycznego, w którym umieszczono cząstki żelaza o wielkości około 60 mikrometrów. Elastomer termoplastyczny zastosowano [1-2] ze względu na dużo lepsze własności mechaniczne, niż powszechnie stosowane, w produkcji kompozytów magnetoreologicznych, silikony. Kompozyty wytworzono samodzielnie. Rozważano udział objętościowy proszku ferromagnetycznego w kompozycie. Stosowano zarówno proszki o jednakowej granulacji jak i mieszane. Opanowano wytwarzanie kompozytu, zarówno przy stymulacji proszku magnetycznego polem magnetycznym, jak i w warunkach jego chaotycznego rozmieszczenia.
EN
The paper presents cyclic properties of isotropic magnetorheological composites with thermoplastic elastomer matrix. Tested materials were manufactured from thermoplastic elastomer matrix with included small iron particles of diameter approximately 60 micrometers. The experimental stand makes use of MTS hydraulic strength machine with additional magnetic circuit. Both magnetic and mechanical fields were controlled. Specimens were subjected to cyclic shear loading.
In the paper the comprehensive review of the research and development done on different potential applications of the magnetorheological elastomers in the automotive and aviation sector is presented. In the introduction part the magnetorheological materials are characterized. The composition of magnetorheological elastomers is described. Also, the magnetorheological fluids are mentioned. In the next part of this document the applications of the magnetorheological elastomers in the automotive sector are showed. The car suspension, the adaptive system of energy absorption, the releasable fasting system, the vibration reduction system of the car's drive shaft, the linear rod active hood lift mechanism are depicted. In the automotive industry, the new solution involving magnetorheological elastomer is described based on the Polish patent proposal.
PL
W niniejszej publikacji przedstawiony jest kompleksowy przegląd zastosowań elastomerów magneto-reologicznych w przemyśle samochodowym i lotniczym. We wprowadzaniu scharakteryzowane są materiały magnetoreologiczne. Skład elastomerów magnetoreologicznych jest opisany. Wymieniono również ciecze magnetoreologiczne. W kolejnej części pracy prezentowane są aplikacje motoryzacyjne z wykorzystaniem elastomerów magnetoreologicznych. Zawieszenie samochodu, adaptacyjny system pochłaniania energii, szybki system rozłączania, system redukcji drgań wału napędowego, aktywny mechanizm siłownika to aplikacje zawierające w swojej budowie elastomery magnetoreologiczne. Następnie, nowe rozwiązanie z elastomerem magnetoreologicznym bazujące na polskim zgłoszeniu patentowym (P-409202), mogące zostać wykorzystane w przemyśle lotniczym, zostało przedstawione. Prace zakończono podsumowaniem i bibliografią.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Otrzymano, opracowane w ramach prac własnych, segmentowe elastomery uretanowe i uretanowomocznikowe (EPU 1,1 oraz EPU 1,25) i porównano ich wybrane właściwości z właściwościami żeli poliuretanowych (PU 80/20 i PU 70/30) uzyskanych na drodze mieszania produktów handlowych. Do elastomerów dodawano różne ilości cząstek ferromagnetycznych (żelaza karbonylkowego) wytwarzając w ten sposób uretanowe elastomery magnetoreologiczne (MRE). Utwardzano je w obecności pola magnetycznego otrzymując strukturę kolumnową z cząstek Fe. Metodą mikroskopii prześwietleniowej oraz SEM oceniano wpływ warunków uzyskiwania MRE na ich strukturę, stwierdzając istotną zależność od udziału cząstek żelaza w kompozycie. W przypadku zawartości większej niż 11,5 % obj. Fe struktura ta przypominała sieć. Metodą VSM badano, w kierunku równoległym i prostopadłym do ułożenia cząstek ferromagnetycznych, właściwości magnetyczne otrzymanych MRE. Zmiana tych właściwości zależy od struktury kompozytu oraz od siły przyłożonego zewnętrznego pola magnetycznego, pod działaniem którego rośnie wartość modułu ścinania a także modułu sprężystości postaciowej (G'').
EN
Urethane and urea-urethane segmental elastomers (EPU 1,1 and EPU 1,25) were synthesized and selected properties of them were compared with those of polyurethane gels (PU 80/20 and PU 70/30) prepared by mixing of commercial products (Table 1). Various amounts of ferromagnetic particles (carbonyl iron) were added to elastomers preparing in this way magnetorheological urethane elastomers (MRE). They were cured in magnetic field and column arrangement of Fe particles has been obtained. The effects of conditions of MRE preparation on their structures were evaluated using transmission microscopy and SEM and significant dependence on the amount of Fe particles in a composite was found (Fig. 1, 2). For Fe amount higher than 11.5 vol. % the structure looks like a net. Magnetic properties of MRE obtained were investigated by VSM method in directions parallel and perpendicular to magnetic particles arrangement (Fig. 5). The changes of properties depend on the composite structure and the power of external magnetic field applied, causing an increase in shear modulus (Fig. 3, 4, 6).
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Magnetorheological elastomer composites based on several magnetoactive fillers such as: carbonyl iron powder, gamma iron oxide, micro- and nano-sized Fe3O4 in ethylene-octene elastomer are reported and studied. To improve the dispersion of the applied fillers in a polymer matrix, ionic liquids were added during the process of composite preparation. To align the particles in the elastomer, the crosslinking process took place in a magnetic field. The effect of the amount of ferromagnetic particles and their arrangement on the microstructure and properties in relation to the external magnetic field was examined. It was found that the microstructure isotropy and anisotropy has a significant effect on the properties of the magnetorheological elastomers. Moreover, different amounts of magnetoactive fillers influence the mechanical properties (increase the tensile strength) of the composites compared to unfilled samples. The magnetic flux directed parallel to the sample surface increases the saturation magnetization of the composites. Magnetic anisotropy can also be seen by analyzing the shape of magnetization curves — steeper curves obtained for anisotropic samples support the hypothesis of a specific arrangement of the filler particles in the elastomer. The addition of ionic liquids improve the dispersion of the applied magnetoactive fillers (CIP and g-Fe2O3) in the elastomer matrix, which in turn favorably affected the network density, tensile properties and magnetorheological effect of the composites.
PL
Wytworzono magnetoreologiczne kompozyty elastomerowe (MRE) na bazie kopolimeru etylenowo-oktenowego z udziałem napełniaczy magnetoaktywnych: żelaza karbonylkowego (CIP), tlenku żelaza gamma (g-Fe2O3), mikro- lub nanometrycznego tlenku żelaza (Fe3O4). W celu zwiększenia stopnia zdyspergowania zastosowanych napełniaczy do układu dodawano różne ciecze jonowe. Kompozyty sieciowane pod wpływem pola magnetycznego wykazywały silną anizotropię cząstek napełniaczy spowodowaną ich specyficznym ułożeniem w matrycy elastomerowej. Stwierdzono, że dodatek napełniaczy magnetycznych wpływa na poprawę właściwości mechanicznych kompozytów; nastąpiło zwiększenie wytrzymałości na rozciąganie wulkanizatów w porównaniu z wytrzymałością próbek nienapełnionych. Stwierdzono również, że strumień magnetyczny ukierunkowany równolegle do powierzchni próbek, a tym samym do łańcuchów cząstek napełniaczy, powoduje zwiększenie magnetyzacji nasycenia kompozytów. Zastosowane ciecze jonowe z grupy soli alkiloamoniowych zwiększają stopień zdyspergowania magnetyków w matrycy elastomerowej, co wpływa na ich większą aktywność. W konsekwencji, napełniacze tworzą rozbudowaną strukturę w elastomerach. Dodatek cieczy jonowych wpływa także na zwiększenie gęstości sieci przestrzennej, poprawę właściwości wytrzymałościowych oraz na wielkość efektu magnetoreologicznego kompozytów.
Elastomery magnetoreologiczne są grupą kompozytów, składających się z cząstek ferromagnetycznych o rozmiarach od około 10 mikrometrów do około 0,5 mm, rozproszonych w osnowie z tworzywa sztucznego o bardzo dużej podatności na odkształcenia sprężyste, np. z kauczuku silikonowego. Celem zwiększenia przewodności elektrycznej elastomerów magnetoreologicznych domieszkuje się osnowę cząstkami grafitu lub srebra albo używa jako osnowy przewodzących polimerów, natomiast dla zwiększenia podatności tych materiałów na odkształcenia w osnowie wytwarza się pory. Przedstawiono struktury różnych typów wspomnianych materiałów i kryteria ich klasyfikacji. Opisano również skład i sposoby otrzymywania elastomerów magnetoreologicznych. Omówiono podstawowe właściwości wyróżnionych typów tych materiałów, takie jak: wzrost efektywnego modułu sztywności, zdolność do odkształceń w polu magnetycznym oraz magnetostrykcję i ujemny magnetoopór i ich sprzężenie w elastomerach magnetoreologicznych z osnową przewodzącą. Fizyczne przyczyny wspomnianych właściwości zostały wyjaśnione i przedstawione. Oddziaływanie między namagnesowanymi cząstkami i zewnętrznym polem magnetycznym, przyłożonym do próbki elastomeru, powoduje wzrost efektywnego modułu sztywności i magnetostrykcję. Opisano także efekt piezoindukcyjny i zmiany grubości elastomerów magnetoreologicznych z osnową przewodzącą podczas przepływu w nich prądu elektrycznego. Przyczyną zmian grubości jest działanie siły elektrodynamicznej na próbkę elastomeru magnetoreologicznego, natomiast przyczyną efektu piezoindukcyjnego jest ruch części próbki tego elastomeru w jej własnym polu magnetycznym. Wzajemne oddziaływanie między namagnesowanymi cząstkami i ich przekazywanie przez bardzo podatną na odkształcenia osnowę na cząstki zwiększa przewodność elektryczną i powoduje ujemny magnetoopór. Omawiając wymienione właściwości podano przykłady zastosowań elastomerów magnetoreologicznych w nowoczesnych urządzeniach technicznych.
EN
The magnetorheological elastomers are group of composites consisted with ferromagnetic particles of size from about 10 micrometres to about 0.5 mm, dispersed in matrix made of plastic of high susceptibility to elastic deformation, in rubber silicone for example. In aim increasing of the electrical conductivity of this magnetorheological elastomers its matrix can be doped through silver or graphite particles or conducting polymers can be used. Also for increase susceptibility of this magnetorheological elastomers to deformations a pores in its matrix are made. Structures of the different types of this mentioned materials and they classification criteria are presented. Composition and production methods of the magnetorheological elastomers are also described in this article. Basic properties of marked types of the magnetorheological elastomers it as: increasing of the effective rigidity modulus, ability to deformations in the magnetic field and also magnetostriction and magnetoresistance and their coupling in case of the magnetorheological elastomers with conducting matrix are discussed. The physical causes of this mentioned properties are also explained and presented. Interaction between magnetised particles and external magnetic field applied to magnetorheological elastomer sample brings the increasing of the effective rigidity modulus and magnetostriction. The piezoinductive effect and thickness changes of magnetorheological elastomers with conducting matrix during electric current flow are also described. A cause of the thickness changes is the electrodynamics force action on the magnetorheological elastomer sample. A cause of the piezoinductive effect is motion of the parts magnetorheological elastomer sample during its deformation in our magnetic field. Mutual interaction between magnetised particles and transmission of its by very susceptible to deformation matrix into particles increasing electrical conductivity brings negative magnetoresistance. Applications examples of the magnetorheological elastomers in modern technical devices are given during discussion of the mentioned properties and effects.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.