Purpose: of this thesis is derivation of dynamical flexibility of the free-free rod system in transportation. The well-known problem of dynamical analysis of systems in rotational transportation was developed in this work to systems with taking into consideration damping forces. Design/methodology/approach: The dynamical flexibility method was used to analysis of the free-free rod’s vibrations. Mathematical models derived in previous articles were used to derivation of the dynamical flexibility. Considerations were done by the Galerkin’s method. Findings: There were considered systems in rotational motion treated in this thesis as main transportation. Dynamical characteristics in form of dynamical flexibility as function of frequency and mathematical models were presented in this work. Research limitations/implications: Analyzed systems were simple linear homogeneous not supported rods. Working motion was limited to plane rotational motion. Future works would consider complex systems and nonlinearity. Practical implications: of derived dynamical characteristics can easily support designing process and can be put to use in stability analysis and assigning stability zones. Thank to derived mathematical models the numerical applications can be implemented and some calculations can be automated. Originality/value: Analyzing models are rotating flexible free-free rods with taking into consideration the damping forces.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.