W pracy zamieszczono wyniki badań stateczności mimośrodowo ściskanych ścianek wspornikowych stanowiących części składowe elementów cienkościennych. Ścianki takie charakteryzują się dużymi smukłościami i są wrażliwe na lokalną utratę stateczności. W celu rozwiązania zadania zastosowano model cienkiej płyty wspornikowej. Funkcję ugięcia zapisano w postaci szeregu wielomianowo – sinusowego. Uwzględniono warunki sprężystego zamocowania przeciw obrotowi oraz różne rozkłady naprężeń (wg funkcji stałej, liniowej i paraboli 2. stopnia) na długości elementu. Naprężenie krytyczne odniesiono do najbardziej ściskanej krawędzi dla danego przypadku obciążenia. Współczynniki wyboczeniowe k wyznaczono metodą energetyczną. Pokazano wykresy współczynnika k dla takich przypadków obciążenia, których nie znaleziono w literaturze. Wyprowadzono wzory aproksymacyjne współczynnika k dla stałego na długości płyty rozkładu naprężeń. We wzorach uwzględniono różne przypadki mimośrodowego ściskania w funkcji wskaźnika sprężystego utwierdzenia. Omówiono sposoby oszacowania współczynnika k dla pośrednich wartości parametrów oraz przedstawiono prostą formułę przybliżoną dla długich płyt wspornikowych. Sposób wykorzystania wzorów aproksymacyjnych pokazano w przykładzie obliczeniowym. Stwierdzono, że uwzględnienie sprężystego zamocowania krawędzi ścianki (płyty) wspornikowej w segmencie pręta cienkościennego oraz poprzecznej i wzdłużnej zmienności naprężeń prowadzi do precyzyjniejszego wyznaczenia naprężeń krytycznych wyboczenia lokalnego. Poprawia to dokładność odwzorowania zachowania się elementu cienkościennego w inżynierskim modelu obliczeniowym. Tak wyznaczone naprężenia krytyczne mogą także posłużyć do dokładniejszego wyznaczenia szerokości współpracujących różnie obciążonych ścianek wspornikowych.
EN
The paper presents the results of investigations into the stability of eccentrically compressed cantilever walls constituting components of thin-walled members. The characteristics of such walls include high slenderness and susceptibility to local stability loss. To solve the problem, a model of a thin cantilever plate was used. The deflection function was written in the form of the polynomial–sine series. The conditions of elastic restraint against rotation and different stress distributions (in accordance with a constant function, linear function and the parabola 20) over the length of the member were accounted for. The critical stress was referred to the edge that was most compressed for a given load case. The buckling coefficients k were determined using the energy method. The plots of the coefficient k were presented for those load schemes that were not found in the literature. Approximation formulas for the coefficient k were derived for stress distribution that was constant over the plate length. In the formulas, different cases of eccentric compression were accounted for in the form of a function of the elastic fixity index. The means of estimating the coefficient k for intermediate parameter values were discussed. Also, a simple approximation formula for long cantilever plates was presented. The use of approximation formulas was demonstrated on the computational example. It was concluded that taking into account the elastic restraint of the edge of the cantilever wall (plate) in the thin-walled bar segment, and also the transverse and longitudinal stress variation gives more precise determination of the critical stress in local buckling. That contributes to improvement in the representation of the thin-walled element behaviour in the computational engineering model. The critical stress determined in the way described in the study can also help to more accurately determine of effective widths of cantilever walls which are under different loads.
The paper presents test results of eccentrically compressed concrete elements strengthened with PBO-FRCM. FRCM (Fabric Reinforced Cementitious Matrix) composites consist of high-strength PBO (p-Phenylene Benzobis Oxazole) fibers embedded in mineral matrix, which gives greater resistance to elevated temperatures compared to popular FRP (Fiber Reinforced Polymer) composites with a polymer matrix. The tests were conducted on elements made of normal-strength concrete with a compressive strength of approximately 45 MPa, which is typical for currently constructed reinforced concrete structures. The strengthening of the tested elements consisted of one, two, or three layers of PBO mesh with an overlap length of 1/4 of the sample circumference. The samples were subjected to both axial and eccentric compression tests.This research provides the foundation for developing a model to calculate the interactive capacity (axial force-bending moment) of reinforced concrete sections, taking into account the external PBO-FRCM composite wrapping.
PL
W artykule przedstawiono wyniki badań mimośrodowo ściskanych elementów betonowych wzmocnionych kompozytami PBO-FRCM. Kompozyty FRCM (ang. Fabric Reinforced Cementitious Matrix – matryca cementowa zbrojona tkaniną) składają się z wysokowytrzymałych włókien PBO (p-Phenylene Benzobis Oxazole) zatopionych w matrycy mineralnej, przez co charakteryzują się większą odpornością na podwyższone temperatury w porównaniu z popularnymi kompozytami FRP (ang. Fiber Reinforced Polymer – polimer zbrojony włóknami) o matrycy polimerowej. Badania przeprowadzono na elementach wykonanych z betonu zwykłego o wytrzymałości na ściskanie ok. 45 MPa, typowego w przypadku obecnie wykonywanych konstrukcji żelbetowych. Wzmocnienie badanych elementów stanowiły jedna, dwie bądź trzy warstwy siatki PBO z zakładem o długości 1/4 obwodu próbki. Próbki poddawano zarówno próbom ściskania osiowego, jak i mimośrodowego. Przedstawione badania są punktem wyjścia do sformułowania modelu, służącego do wyznaczania interakcyjnej nośności (siła osiowa – moment zginający) przekrojów żelbetowych, z uwzględnieniem zewnętrznego uzwojenia kompozytowego PBO-FRCM.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.