By dividing each side of the equilateral triangle being a face of a regular 20-hedron tnto f parts and clipping parting lines as in fig. l, wo get semi-regular 80-and 240-hedrons. Vertices of the two polyhedrons lie on the concentric sphere. Rectilinear sides of the lattice, i.e. the polyhedron's sides, form the broken line of chords replacing the sphere's circles. The given geometrical parameters and the topology of each polyhedron's lattice (see frg. 2 and 3) can be used in designing one-layerb ar space structures,e .g. cupolas. Two such lattices (as shown in fig. 4) may be connected in a way presented in fig. 5 to form a two-layer space strucfure.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.