Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  domestic cattle
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents the results of studies on the usefulness of the texture images USG (ultrasonography) analysis by GLCM (Gray Level Co-Occurrence Matrix) in neural modeling. Tests pertained to the efficacy of the classification of the corpora lutea located in ultrasound images of the domestic cattle ovaries performed by artificial neural networks. The tests were performed using three different methods: the first one used unprocessed images - raw, the second method used image processing - unsharp mask. In the third method the raw images were processed by filter reducing the noise - despeckle filter. For each of the presented methods, the best generated neural network model had the structure of the MLP (Multi Layers Perceptron). The best results, in terms of artificial neural network were obtained in the case of ultrasound images that were not processed prior to texture analysis. As a result, it generated MLP neural model of structure 5:5-8-1:1.
PL
W pracy zaprezentowano wyniki przeprowadzonych badań nad przydatnością analizy tekstury obrazów USG (UltraSonoGraphy) metodą GLCM (Gray Level Co-Occurrence Matrix) w modelowaniu neuronowym. Sprawdzano skuteczność klasyfikacji przez sztuczne sieci neuronowe ciałek żółtych znajdujących się na obrazach USG jajników bydła domowego. Badania wykonano za pomocą trzech różnych metod: w pierwszej wykorzystano obrazy nieprzetworzone - surowe, w drugiej posłużono się metodą przetwarzania obrazu - filtrem wyostrzającym. Natomiast w trzecim sposobie obrazy surowe zostały przetworzone filtrem redukującym zaszumienia. Dla każdej z zaprezentowanych metod, najlepszy wygenerowany model sieci neuronowej miał strukturę MLP (Multi Layer Perceptron). Najlepsze wyniki, pod względem jakości sztucznej sieci neuronowej uzyskano w przypadku obrazów USG, które nie były przetwarzane przed analizą tekstur. W efekcie wygenerowano model neuronowy MLP o strukturze 5:5-8-1:1.
EN
We examined fluctuating asymmetry of 25 characters of skull morphology (foramina, apertures through the bone for nerves and small blood vessels) to estimate the developmental stability of European bison Bison bonasus (Linnaeus, 1758) (n = 34), cattle (n = 13) and their hybrids (54 hybrids of different generations). Mean number of asymmetrical characters per individual was used as a measure of fluctuating asymmetry. European bison were characterized by a lower developmental stability, compared with cattle. The developmental stability of hybrids was similar to that of cattle and higher than that of European bison. These findings suggest that the genomes of parental forms are similar and that there is no indication of the disruption of genetic coadaptation in their hybrids.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.