Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dokładność sieci
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom nr 3
74--79
PL
Choroby układu oddechowego człowieka od zawsze były obciążeniem dla całego społeczeństwa. Sytuacja stała się szczególnie trudna po wybuchu pandemii COVID-19. Jednak nawet teraz nierzadko zdarza się, że ludzie konsultują się ze swoim lekarzem zbyt późno, już po niepożądanym rozwinięciu się choroby. W celu ochrony pacjentów przed ciężką chorobą płuc, zaleca się jak najwcześniejsze wykrycie wszelkich objawów zaburzających pracę układu oddechowego. W artykule przedstawiono wczesny prototyp urządzenia, który przypomina cyfrowy stetoskop. Przeprowadza on automatyczną analizę oddechu, poza rejestrowaniem cykli oddechowych. Dodatkowo urządzenie ma funkcję powiadamiania użytkownika (np. przez smartfon) o konieczności udania się do lekarza na bardziej szczegółowe badanie. Dźwiękowe nagranie cykli oddechu przekształcane jest na dwuwymiarową macierz za pomocą współczynników cepstrum w skali melowej (MFCC). Taka macierz jest analizowana przez sztuczną sieć neuronową. W wyniku przeprowadzonych badań stwierdzono, że najlepsze z otrzymanych rozwiązań prezentowanej sieci neuronowej osiągnęło pożądaną dokładność i wysoką precyzję.
EN
Diseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is not uncommon for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected as early as possible. This article presents an early prototype of a device that can be compared to a digital stethoscope that performs auto-breath analysis. So apart from recording the respiratory cycles, the device also analyzes them. In addition, it also has the functionality of notifying the user (e.g. via a smartphone) about the need to go to the doctor for a more detailed examination. The audio recording of breath cycles is transformed to a two-dimensional matrix using mel-frequency cepstrum coefficients (MFCC). Such a matrix is analyzed by an artificial neural network. As a result of the research, it was found that the best of the obtained solutions of the presented neural network achieved the desired accuracy and precision at the level of 84%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.