Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dithiothreitol
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
nr 4
EN
Inhibition of jack bean activity by 2,5-dichloro-1,4-benzoquinone (DCBQ) was studied in phosphate buffer, pH 7.0. It was found that DCBQ acted as a strong, time and concentration dependent inactivator of urease. Under the experimental conditions obeyed the terms of pseudo-first-order reaction, urease was totally inactivated. Application of Wilson-Kitz method proved that the urease-DCBQ interaction followed a simple bimolecular process and the presence of intermediate complex was undetectable. The determined second order rate constant of the inactivation was 0.053 (μM min)-1. Thiols such as l-cysteine, glutathione and dithiothreitol (DTT) protected urease from inhibition by DCBQ but DCBQ-modified urease did not regain its activity after DTT application. The thiol protective studies indicated an essential role of urease thiol(s) in the inhibition. The irreversibility of the inactivation showed that the process was a result of a direct modification of urease thiol(s) by DCBQ (DCBQ chlorine(s) substitution). The decomposition of DCBQ in aqueous solution at natural light exposure was monitored by visible spectrophotometry, determination of the total reducing capacity (Folin-Ciocalteu method) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging ability. The DCBQ conversion resulted in a decrease of the inhibition power and was well correlated with the increase of the total reducing capacity and DPPH scavenging ability. These findings were attributed to DCBQ transformation by photolysis and the hydrolysis effect was found to be negligible.
EN
Arabidopsis thaliana AtNUDT7 Nudix pyrophosphatase hydrolyzes NADH and ADP-ribose in vitro and is an important factor in the cellular response to diverse biotic and abiotic stresses. Several studies have shown that loss-of-function Atnudt7 mutant plants display many profound phenotypes. However the molecular mechanism of AtNUDT7 function remains elusive. To gain a better understanding of this hydrolase cellular role, proteins interacting with AtNUDT7 were identified. Using AtNUDT7 as a bait in an in vitro binding assay of proteins derived from cultured Arabidopsis cell extracts we identified the regulatory protein RACK1A as an AtNUDT7-interactor. RACK1A-AtNUDT7 interaction was confirmed in a yeast two-hybrid assay and in a pull-down assay and in Bimolecular Fluorescence Complementation (BiFC) analysis of the proteins transiently expressed in Arabidopsis protoplasts. However, no influence of RACK1A on AtNUDT7 hydrolase catalytic activity was observed. In vitro interaction between RACK1A and the AGG1 and AGG2 gamma subunits of the signal transducing heterotrimeric G protein was also detected and confirmed in BiFC assays. Moreover, association between AtNUDT7 and both AGG1 and AGG2 subunits was observed in Arabidopsis protoplasts, although binding of these proteins could not be detected in vitro. Based on the observed interactions we conclude that the AtNUDT7 Nudix hydrolase forms complexes in vitro and in vivo with regulatory proteins involved in signal transduction. Moreover, we provide the initial evidence that both signal transducing gamma subunits bind the regulatory RACK1A protein.
EN
The membrane-bound sterolglucoside synthase from the yeast Saccharomyces cerevisiae has been solubilized by nonionic detergent, Nonidet P-40, Triton X-100, and partially purified by DEAE-cellulose column chromatography and ammonium sulfate fractionation. SDS/PAGE of the purified fraction revealed the presence of two protein bands of molecular mass 66 kDa and 54 kDa. In an attempt to identify further the polypeptide chain of sterolglucoside synthase, the partially purified enzyme was treated with [di-125I]-5-[3-(p-azidosalicylamide)]allyl-UDPglucose, a photoactive analogue of UDPglucose, which is a substrate for this enzyme. Upon photolysis the 12SI-labeled probe was shown to link covalently to the 66kDa protein. The photoinsertion was competed out by the presence of unlabeled UDPglucose thus suggesting that this protein contains substrate binding site for UDPglucose. Since photoinsertion of the probe to protein of 66 kDa correlates with the molecular mass of the protein visualized upon enzyme purification we postulate that the 66 kDa protein is involved in sterolglucoside synthesis in yeast.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.