Directional properties of loudspeaker systems with analog and digital crossover networks have been investigated. The study has been performed for a three-way loudspeaker system subjectively classified as of average quality. The digital crossover networks have been designed in such manner that the cut-off frequencies of filters (1000 Hz and 5000 Hz) corresponded to those of the analog networks and the slopes of the amplitude characteristics were 12 and 18 dB/oct. The set of impulse responses for different angles in the whole sphere around the loudspeaker system were measured and then, applying a convolution with the excitation signals of the "tone burst" type, for some specific frequencies from the cut-off region of crossover networks, the directional characteristics have been calculated for the steady and transient states. The quantitative analyses of results, based on the values of directional coefficient, show significant differences between the characteristics in steady and transient states, as well as for the analog and digital systems.
A triple-band microstrip patch antenna is presented in this article with detail investigation of its working mechanism and performance characteristics. The antenna consists of a rectangular slot on the patch to achieve multiband operation. Three distinct frequencies of 2.4 GHz, 5.5 GHz and 7.5 GHz are achieved with return losses of 27 dB, 29 dB and 29 dB respectively. The Impedance Bandwidths are 70 MHz (2.52 GHz-2.44 GHz) at 2.4 GHz, 220 MHz (5.65 GHz-5.43 GHz) at 5.5 GHz and 250 MHz (7.57 GHz-7.32 GHz) at 7.5 GHz, which satisfy the requirements of Wi-Fi, Wi-MAX and satellite communications bands. The fabricated prototype of the antenna has total dimension of 53×53×1.6 mm³ over FR4 substrate. The antenna is simple and has sensible radiation characteristics with considerable gain. This work also focuses on developing a Link Budget model for its application in satellite communication. Most notably, it examines overall system efficiency and optimum path loss, distance analysis, system noise temperature, signal to noise power ratio, the size of antenna and the overall customer satisfactions. The highest gain of the antenna is achieved as 3.5 dB in the band (5.65 GHz-5.43 GHz), while the highest directivity and bandwidth are found as 8.7 dBi and 250 MHz respectively in the higher operating band. The affordable agreement between the simulated and measuring outcomes justifies that the antenna is often applicable for Wi-Fi (2.4 GHz), Wi-MAX (5.25 – 5.85 GHz) and satellite (7.24 – 7.57 GHz) communications.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Since broadband antennas do not have the same radiation pattern as dipole antenna incidence disturbance may be measured with an error. Models of the broadband antennas for numerical simulations were created and verified. Using these models we obtained the relation between the receiving antenna directivity and measuring distance that leads into the directivity error and also affects uncertainty of the measurement.
PL
Zostały opracowane modele szerokopasmowych anten dla symulacji numerycznej. Z zastosowaniem tych modeli otrzymano relacje pomiędzy kierunkowością anteny odbiorczej oraz odległością pomiaru powodujące błędy w pomiarach kierunkowości.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this study, a linear array of antenna arrays, including beam scanning, lateral global connections, element designs, and bars, was developed using an antenna toolbox, guidance, and analysis on a 9-cell linear array of half-way wavelength dipoles. It aims to display a linear array model at the angle and central element patterns at the design frequency for 3D and 2D elements. For this study, the resonant dipole will be allocated to a single linear array radiator by selecting a frequency of 1,8 GHz for the design. Disposition at the resonance frequency of isolated dipole tuning. To provide the other parts with a reference impedance for the patterns, every component spirals independently. The effect of the phenomenon should not be determined by the excitement of others but should also be supported by the development of currents for each item in the array. The standardized central element pattern was monitored using standardized 9-dipole linear width management.
PL
W tym badaniu opracowano liniowy układ układów anten, w tym skanowanie wiązki, boczne połączenia globalne, projekty elementów i pręty, przy użyciu zestawu narzędzi antenowych, wskazówek i analizy na 9-komorowym układzie liniowym dipoli o połowie długości fali. Ma na celu wyświetlenie liniowego modelu szyku pod kątem i wzorców elementów centralnych z częstotliwością projektową dla elementów 3D i 2D. W tym badaniu dipol rezonansowy zostanie przydzielony do pojedynczego promiennika liniowego, wybierając częstotliwość 1,8 GHz do projektu. Dyspozycja przy częstotliwości rezonansowej izolowanego strojenia dipolowego. Aby zapewnić pozostałym częściom impedancję odniesienia dla wzorów, każdy element kręci się spiralnie niezależnie. Efekt zjawiska nie powinien być determinowany przez podniecenie innych, ale powinien być również wspierany przez rozwój prądów dla każdego elementu w szyku. Standaryzowany wzór elementu centralnego monitorowano przy użyciu znormalizowanego 9-dipolowego zarządzania szerokością liniową.
This paper proposes the design and simulation of 2×2 circular patch antenna array working at 28 GHz by using four inset feed micro strip circular patch antennas to achieve beam forming with directivity around 13dB which is required to overcome part of high path loss challenge for high data rate mm-5G mobile station application. Four element 2x2 array consists of two 1x2 circular patch antenna arrays based on power divider and quarter wavelength transition lines as a matching circuit. The designed antenna array is simulated on RT/duroid 5880 dielectric substrate with properties of 0.5mm thickness, dielectric constant ε r =2.2, and tangent loss of 0.0009 by using Computer System Technology (CST) software. The performances in terms of return loss, 3D–radiation pattern is evaluated at 28 GHz frequency band. The design also includes the possibility of inserting four identical 2x2 antenna arrays at four edges of mobile station substrate to achieve broad space coverage by steering the beams of the mobile station arrays.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper presents a deep analysis of coplanar waveguide (CPW) feed Planar antenna for frequencies from 2.6 GHz up to 13.6 GHz, which covers the authorised Ultra-wideband (UWB) from 3.1-10.6GHz and the X-band from 8-12GHz applications. The Parametric analysis will help the researchers understand antenna parameters' effects on the reflection coefficient (S11) variations. These important parameters are the length of the CPW fed (Cl), the width of the substrate (W), the width of the feed-line (Wf) and the gap between the feed-line and CPW disk (g). The total physical planar antenna dimension is 26 mm × 26mm × 1.6 mm, corresponding to the centre frequency range at 7.5 GHz. The UWB CPW planar antenna is fed via a coplanar waveguide (CPW) to attain the best impedance matching for UWB systems. The presented CPW planar antenna has an impedance UWB bandwidth of 11.0 GHz from 2.6 GHz up to 13.6 GHz at −10 dB return loss. The simulated UWB planar antenna displays an omnidirectional radiation behaviour with a simulated gain of 7.3 dB at 13.6 GHz, a directivity of 7.5 dBi at 13.6 GHz and favourable radiation efficiency of 97%. The presented antenna has the specialised prospect to be used for UWB and X-band systems.
PL
W artykule przedstawiono dogłębną analizę współpłaszczyznowej anteny falowodowej (CPW) zasilającej planarną antenę dla częstotliwości od 2,6 GHz do 13,6 GHz, która obejmuje autoryzowane aplikacje ultraszerokopasmowe (UWB) w zakresie 3,1-10,6 GHz oraz pasmo X w zakresie 8-12 GHz . Analiza parametryczna pomoże naukowcom zrozumieć wpływ parametrów anteny na zmiany współczynnika odbicia (S11). Tymi ważnymi parametrami są długość podawanego CPW (Cl), szerokość podłoża (W), szerokość linii zasilającej (Wf) oraz szczelina między linią zasilającą a dyskiem CPW (g). Całkowity wymiar fizycznej płaskiej anteny wynosi 26 mm × 26 mm × 1,6 mm, co odpowiada środkowemu zakresowi częstotliwości przy 7,5 GHz. Antena planarna UWB CPW jest zasilana przez współpłaszczyznowy falowód (CPW), aby uzyskać najlepsze dopasowanie impedancji dla systemów UWB. Prezentowana antena planarna CPW ma pasmo impedancji UWB 11,0 GHz od 2,6 GHz do 13,6 GHz przy tłumieniu odbiciowym −10 dB. Symulowana antena planarna UWB wykazuje dookólne zachowanie promieniowania z symulowanym wzmocnieniem 7,3 dB przy 13,6 GHz, kierunkowością 7,5 dBi przy 13,6 GHz i korzystną wydajnością promieniowania 97%. Prezentowana antena ma specjalizowaną perspektywę do zastosowania w systemach UWB oraz w paśmie X.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper presents a compact uniplanar Vivaldi antenna sensor for microwave imaging. It is ideal for microwave imaging systems with its large bandwidth and end-fire radiation performance. The Vivaldi patches integrate a coplanar waveguide (CPW) feed line, ensuring the entire structure is compact and simple. Reflection coefficient, radiation pattern, gain, efficiency, and directivity were the antenna parameters analyzed to determine the Vivaldi antenna's performance. The bandwidth of the antenna sensor is wider, approximately 5 GHz (3-8 GHz). The gain of the antenna is 6.72 dBi, and the directivity is 9.59 dBi.
PL
W artykule przedstawiono kompaktowy jednopłaszczyznowy czujnik antenowy Vivaldiego do obrazowania mikrofalowego. Jest idealny do systemów obrazowania mikrofalowego dzięki dużej szerokości pasma i wydajności promieniowania końcowego. Łaty Vivaldi integrują współpłaszczyznową linię zasilającą falowodu (CPW), zapewniając, że cała konstrukcja jest zwarta i prosta. Współczynnik odbicia, charakterystyka promieniowania, wzmocnienie, wydajność i kierunkowość były parametrami anteny analizowanymi w celu określenia wydajności anteny Vivaldi. Szerokość pasma czujnika anteny jest szersza, około 5 GHz (3-8 GHz). Zysk anteny wynosi 6,72 dBi, a kierunkowość 9,59 dBi.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.