The objective of this study was to estimate the height of roughness element (ZH) and zero-displacement length (Zd) for Baghdad city using remote sensing and GIS techniques and resources such as DEM, DSM, and shapefile. The difference between DEM and DSM produced digital height model which represents the height of the roughness element for the region, which was used to determine the zero-displacement height. The results showed that the variations in Zd values depend strongly on ZH. Rusafa had the highest Zd (15.8 m) while Dora had the lowest values (4.7 m). Thus, Baghdad city has medium density classification according to the results of Zd and ZH values.
W laboratorium geotechnicznym Politechniki Gdańskiej prowadzone są badania przemieszczania się gruntu naciskanego stopą fundamentową budowli. Odbywa się to w urządzeniu specjalnie skonstruowanym dla tego celu. Jest to skrzynia z jedną ścianką wykonaną ze szkła. Typowy eksperyment tam prowadzony to eksperyment ze „smugami”. Do skrzyni wsypuje się odpowiednio spreparowany jasny piasek na przemian z piaskiem ciemniejszym. Grunt naciskany stopą odkształca się. Kierunki odkształceń są widoczne przez szybę. Mankamentem tej metody okazuje się brak możliwości pomiaru kierunku i długości przesunięć. Rozwinięciem tej metody jest zastąpienie smug znacznikami przylegającymi do szyby. Kilkanaście prób potwierdziło przydatność tej metody. Techniką jednoobrazowej cyfrowej fotogrametrii można określić kierunki i długości przemieszczeń znaczników. W pracy przedstawione są wyniki jednego z eksperymentów z propozycjami graficznej ich prezentacji oraz generowania cyfrowego „smug”. Przedstawiono też metodę obliczania wymiaru fraktalnego, który charakteryzuje dynamikę zmian zachodzących w odkształcanym gruncie.
EN
The geotechnical laboratory at Gdańsk Polytechnic conducts investigation of the relocation of soil under the downward pressure of a building foundation footing. Tests are carried out in a device specially constructed for the purpose, i.e. a box with one of its walls made of glass. A typical experiment conducted with the use of that device is the one involving specially prepared sand, which is laid alternately in streaks of brighter and darker shades. As the foundation footing is placed, the ground gives in, and the directions in which the sand moves are visible through the glass. One drawback of that method is the fact that it is impossible to measure the direction and length of the sand relocations. The method can be developed by replacing streaks of sand with markers adhering to the glass. The method was confirmed as useful in several tests. The technique of single-image digital photogrammetry makes it possible to determine the directions and lengths of relocated markers. This paper presents the results of one such experiment, along with a number of suggestions of how they may be presented graphically, and how the streaks may be generated digitally. A method is also examined as regards calculating the fractal dimension, which describes the dynamics of changes that may be observed in the ground being deformed.
The integration of geodetic and photogrammetric data has become a new tool that has expanded the existing measurement capabilities, as well as it found its application outside the geodetic sector. As a result, over the past decades, the process of topographic data acquisition has caused cartographic industry to move from classical surveying methods to passive and active detection methods. The introduction of remote sensing technology has not only improved the speed of data acquisition but has also provided elevation data for areas that are difficult to access and survey. The aim of the work is to analyse consistency of elevation data from the Georeference Database of Topographic Objects (Pol. Baza danych obiektów topograficznych - BDOT500) with data from airborne laser scanning (ALS) for selected 15 research areas located in the City of Kraków. The main findings reveal discrepancies between elevation data sources, potentially affecting the accuracy of various applications, such as flood risk assessment, urban planning, and environmental management. The research gap identified in the study might stem from the lack of comprehensive investigations into the consistency and accuracy of elevation data across different databases and technologies in urban areas. This gap highlights the need for a thorough examination of the reliability of various data sources and methods of urban planning, disaster management, and environmental analysis. The integration of diverse databases and technologies, like ALS and geodetic measurements, in various applications introduces potential discrepancies that can significantly impact decision-making and outcomes.
Zapoczątkowana w 2010 roku misja TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) jest pierwszą satelitarną misją radarową, w ramach której zostały pozyskane dane interferometryczne w trybie bistatic InSARstripmap przez dwa bliźniacze satelity TerraSAR-X (TSX) oraz TanDEM-X (TDX) tworzące formację Helix. Realizacja tej konfiguracji ma na celu budowę numerycznego modelu pokrycia terenu (NMPT) o zasięgu globalnym w standardzie HRTI-3 (High Resolution Terrain Information). W artykule przedstawiono opis i specyfikację podstawowych produktów misji, jakimi są m.in. numeryczne modele pokrycia terenu, a także dodatkowych komponentów w postaci warstw informacyjnych i masek. Opisane zostało również zastosowanie techniki interferometrii radarowej w procesie budowy numerycznego modelu pokrycia terenu w postaci cyfrowej.
EN
Started in 2010 TanDEM-X mission (TerraSAR-X add-on for Digital Elevation Measurement) is the first space borne radar interferometer mission that acquires interferometric data in bistatic InSARstripmap mode with two spacecrafts TerraSAR-X (TSX) and TanDEM-X (TDX) flying in Helix formation. That configuration enables generation of a global digital elevation model compatible with the HRTI-3 standard. This paper presents an overview and specification of primary products of the TanDEM-X mission, i.e. digital elevation models and additional components such as information layers and masks. Moreover, the use of radar interferometry techniques for generation of the digital elevation model (DEM) and applications of InSARare discribed.
Ograniczone zasoby złóż paliw oraz ich rosnąca cena na rynku, a także postępujące w ostatnich latach zmiany klimatyczne sprawiły, że coraz więcej uwagi poświęca się środowisku oraz odnawialnym źródłom energii. Wychodząc naprzeciw wymienionym problemom, w artykule podjęto próbę analizy geometrii dachów wybranego osiedla domów jednorodzinnych w kontekście montażu kolektorów słonecznych. Do badań nad przedstawionym zagadnieniem wykorzystano dane pochodzące z lotniczego skaningu laserowego oraz obrysy budynków. Na użytek gospodarstw domowych dachy budynków wydają się być najodpowiedniejszą lokalizacją do montażu kolektorów słonecznych, dlatego przeprowadzone analizy zawężono do tych obszarów. Z uwagi na specyfikę samych urządzeń w analizach uwzględniono kilka czynników, takich jak: efekt zacienienia, minimalna powierzchnia, jak również nachylenie czy orientacja połaci dachowych. Właściwie dobrane kryteria klasyfikacyjne rastrowych modeli spadków, ekspozycji i usłonecznienia umożliwiły wskazanie obszarów dogodnych pod względem montażu kolektorów słonecznych, a tym samym stały się podstawą do określenia indywidualnych „predyspozycji słonecznych” dachów zabudowy mieszkalnej.
EN
The limited amount of fossil fuels, their growing price on the market and progressive climatical changes last years caused that more attention have been focused on environment and the renewable sources of energy. This paper presents the results of the analysis aiming at selection of roof areas suitable for the installation of photovoltaic devices. Airborne lasers scanning data combined with the digital topographic data were the basis for delimitation of the slope, exposure, and not shaded roof area.
The article presents the possibilities of using unmanned aerial vehicles (UAV) in engineering geology. The first part compares the method of obtaining products from UAV with airborne laser scanning, showing its limitations and advantages. Then, examples of using the products made from photos obtained from UA V raids (digital surface model - DSM, digital terrain model - DTM and orthophotomosaic) were introduced. The examples are assigned to the individual phases of engineering geology documentation (collecting available information about the site, designing research, performing research and presenting research results). The last part presents an analysis of the accuracy of an exemplary model created from a UAV raid based on control points measured using the GNSS-RTN method. The result of the analysis was the confirmation of the possibility of obtaining information about the area from the DSM, DTM and orthophotomosaic with high accuracy comparable to classic land surveying methods.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.