The mitochondrial ATP-sensitive K+ (mitoKATP) channel was discovered more than a decade ago. Since then, several pharmacological studies have identified agents that target this channel some of which selectively target mitoKATP. These and other studies have also suggested that mitoKATP plays a key role in the process of ischemic preconditioning (IPC) and prevention of apoptosis. The mechanism by which mitoKATP exerts its protective effects is unclear, however, changes in mitochondrial Ca2+ uptake and levels of reactive oxygen species, and mitochondrial matrix swelling are believed to be involved. Despite major advances, several important issues regarding mitoKATP remain unanswered. These questions include, but are not limited to: the molecular structure of mitoKATP, the downstream and upstream mechanisms that leads to IPC and cell death, and the pharmacological profile of the channel. This review attempts to provide an up-to-date overview of the role of mitoKATP in cardioprotection.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Objectives: Severe hypoglycemia in a course of inoperable insulinoma may be life-threating and often it is not well controlled, even by high doses of diazoxide requiring second line treatment. Among available methods PRRT is characterized by relatively low toxicity and is connected with favorable antitumor effect. The aim of the study was an evaluation of the PRRT effectiveness in control of hypoglycemia in patients with primary inoperable insulinoma. Methods: Three patients (female with metastatic insulinoma,male with primaryinoperable pancreatic tumor, female with MEN1 syndrome and hepatic metastases) were treated with PRRT due to severe hypoglycemia poorly controlled by diazoxide in course of primary inoperable insulinoma. Results: Patient 1 baseline fasting glucose concentration increased from 2.4 mmol/L [3.30-5.60] to 5.9 mmol/L after PRRT. In patient 2 fasting glucose level 2.30 mmol/L increased after PRRT to 7.0 mmol/L, while baseline insulin level initially 31.15 uU/mL [2.6–24.9] decreased to 15.4 uU/mL. In patients 3, baseline fasting glucose level 2.5 mmol/L increased after PRRT to 7.9 mmol/L, and insulin decreased from 57.9 uU/mL to 6.3 uU/mL. In imaging there was partial response (PR) in patient 1 and 2 and stabilization of the tumor size in patient 3. In patient 2 reduction of tumor infiltration let for curative surgery performed 4 months after PPRT. Conclusions: PRRT may be effective as a first or second line treatment in management of hypoglycemia for patients with hormonally active inoperable insulinoma.
The mitochondrial ATP-sensitive K+ (mitoKATP) channel was discovered more than a decade ago. Since then, several pharmacological studies have identified agents that target this channel some of which selectively target mitoKATP. These and other studies have also suggested that mitoKATP plays a key role in the process of ischemic preconditioning (IPC) and prevention of apoptosis. The mechanism by which mitoKATP exerts its protective effects is unclear, however, changes in mitochondrial Ca2+ uptake and levels of reactive oxygen species, and mitochondrial matrix swelling are believed to be involved. Despite major advances, several important issues regarding mitoKATP remain unanswered. These questions include, but are not limited to: the molecular structure of mitoKATP, the downstream and upstream mechanisms that leads to IPC and cell death, and the pharmacological profile of the channel. This review attempts to provide an up-to-date overview of the role of mitoKATP in cardioprotection.