The paper presents application of unsupervised learning methods to detect ambiguity groups in the data used in the diagnostics of analog systems. The proposed approach processes labelled data sets from simulated systems to find similar examples belonging to different faulty states. Two algorithms were used in the presented research: graph clustering. Efficiency of the method is compared and verified against the exemplary electrical system, i.e. induction machine. Future prospects of such methods will be also included.
PL
W artykule przedstawiono zastosowanie metod uczenia bez nadzoru w celu wykrycia grup niepewności w danych wykorzystywanych do diagnostyki systemów analogowych. Dane przetwarzane są w celu znalezienia podobnych do siebie przykładów należących do różnych kategorii uszkodzeń. Metoda clusteringu grafowego zostały przetestowane na przykładzie silnika indukcyjnego.
The paper presents the diagnostic applications of artificial neural networks (ANN). Aims and problems present in the contemporary diagnostics are introduced. The structure of the artificial intelligence-based system is presented and discussed in detail. Various approaches to design the on-line fault detection and location system using artificial intelligence approaches are introduced. The generic architecture of the ANN and its variations are presented. Next, their diagnostic applications, advantages and drawbacks are discussed. Application of RBF ANN-based diagnostic module to detect and identify faults of the 5th order lowpass filter is presented. Finally, usability and limitations of the ANN-based diagnostic system are provided.
PL
W artykule przedstawiono zastosowania sztucznych sieci neuronowych w diagnostyce systemów analogowych. Opisano główne cele diagnostyki oraz problemy spotykane obecnie podczas detekcji i lokalizacji uszkodzeń. Wprowadzono ogólną strukturę systemu diagnostycznego opartego na metodach sztucznej inteligencji. Przedstawiono różne metody inteligentne, które mogą zostać zastosowane w systemie działającym w trybie on-line. Następnie omówiono ogólną architekturę sztucznej sieci neuronowej oraz jej cechy szczególnie istotne z punktu widzenia detekcji i lokalizacji uszkodzeń. Specyficzne architektury sieci wraz z ich zastosowaniami diagnostycznymi przedstawiono w szczegółach. Na przykładzie filtru dolnoprzepustowego 5. rzędu przedstawiono działanie metody diagnostycznej wykorzystującej sieć neuronową typu RBF. Omówiono możliwości i ograniczenia stosowalności sztucznych sieci neuronowych jako narzędzia diagnostycznego.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper presents an approach to automatically select the optimal parameters of the kernel functions used in the Support Vector Machines (SVM) approach for the diagnostic task. Various variants of the simulated annealing were implemented and verified in order to obtain the best diagnostic outcomes. The tested system was the fourth order lowpass filter, consisting of two Sallen-Key sections and nine diagnosable elements. The tests covered verification of simulated annealing parameters (starting temperature and annealing ratio) and various SVM kernels (with coding schemes) in the multiple faults detection and location task. The proposed method verified against the exhaustive search.
PL
Artykuł przedstawia metodę automatycznego doboru optymalnych parametrów funkcji jądra wykorzystywanych przez maszyny wektorów podpierających w diagnostyce systemów analogowych. Różne warianty symulowanego wyżarzania zostały zaimplementowane w celu uzyskania jak najlepszych wyników diagnostycznych. Metoda została przetestowana na modelu filtru dolnoprzepustowego czwartego rzędu składającego się z dwóch sekcji Sallen-Key oraz dziewięciu elementów mogących być przyczyną uszkodzeń. Eksperymenty obejmowały dobór parametrów symulowanego wyżarzania (temperatura początkowa oraz szybkość schładzania) oraz jąder wektorów podpierających w detekcji i lokalizacji uszkodzeń. Opisana metoda została porównana z przeszukiwaniem wyczerpującym.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.