Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  density topology
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available On the concept of generalization of I-density points
100%
EN
This paper deals with essential generalization of I-density points and I-density topology. In particular, there is an example showing that this generalization of I-density point yields the stronger concept of density point than the notion of I(J )-density. Some properties of topologies generated by operators related to this essential generalization of density points are provided.
2
80%
EN
In the paper we investigate density type topologies generated by functions f satisfying condition [formula] which are not generated by any sequence.
3
Content available Ψ I -density topology
80%
|
|
tom Vol. 15
67--80
EN
The purpose of this paper is to study the notion of a Ψ I-density point and Ψ I -density topology, generated by it analogously to the classical I-density topology on the real line. The idea arises from the note by Taylor [3] and Terepeta and Wagner-Bojakowska [2].
4
Content available On homeomorphisms of the density type topologies
80%
EN
This paper is dealing of the homeomorphisms of the density type topologies introduced in [3].
EN
Let (X, Tx) be a topological space and let (Y, dy) be a metric space. For a function f : X → y denote by C(f) the set of all continuity points of f and by D(f) = X\C(f) the set of all discontinuity points of f. Let C(X,Y) = {f : X → Y; f is continuous}, H(X, Y) = {f: X →Y; D{f) is countable}, H1(X, Y) = {f: X → Y; ∃h ∈c(x,Y) {x; f(x) ≠ h{x)} is countable}, and H2(X, Y) = H(X, Y) ∩ H1(X, Y). In this article we investigate some convergences (pointwise, uniform, quasiuniform, discrete and transfinite) of sequences of functions from H(X, Y), H1(X, Y) and H2(X, Y).
|
2006
|
tom Vol. 39, nr 2
327-334
EN
In this article we investigate the products of two unilaterally approximately continuous and simultaneously approximately regulated functions. In particular we prove some necessary conditions satisfied by the products of two such functions and a sufficient condition ensuring that a function is the product of two such functions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.