Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  decellularized tissue
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The aim of the work was to create an appropriate substrate for organ transplantation using bioactive tissue-based scaffold populated by cells of the graft recipient. The purpose of the modeling was to investigate the mechanical effects of wave loading of aortic and pulmonary tissue material. Methods: The biological properties of tissues of aortic and pulmonary valves were modified by the process of decellularization. The host cells were removed by various physical methods with focus on minimal degradation of the extracellular matrix. Thus, the decellularization process was controlled by histological methods. The tissue decellularization process was simulated by finite element modelling. Results: The mechanical results represented by a displacement at the center of the sample were coherent and the heterogeneity of the distribution of the caves on the surface of the samples was confirmed, both by experiment and in the simulation by the alternate occurrence of local minima and maxima. The latter results from the uneven removal of cells from the effect of the wave causing decellularization were also predicted by the numerical model. Laser radiation had a destructive effect on the components of the extracellular matrix (e.g., collagen and elastic fibers), mainly depending on the fluence and number of pulses in a single exposure. Conclusions: The differences between the valve tissue materials were shown, and the impact of the process of decellularization on the properties of the tissues was analyzed. It should be emphasized that due to low absorption and high scattering, laser radiation can deeply penetrate the tissue, which allows for effective decellularization process in the entire volume of irradiated tissue.
EN
Currently, one of the most serious public health issues is the increasing number of cases of chronic liver disease and cirrhosis both of which can lead to liver failure. The only effective method of treatment for this life-threatening condition remains liver transplantation. Unfortunately, the chronic shortage of transplantable organs seriously limits its accessibility to patients. Thus, tremendous research has been done to develop methods capable of replacing liver transplantation by artificial means or to create techniques to partially or fully replace liver function in patients with impaired livers, until liver regeneration or transplantation. This review article is focused on research results that utilize living cells in order to establish bridging therapies in cases of liver failure. This includes both experimental and clinically tested techniques, such as hepatocyte transplantation and usage of the hybrid bioartificial liver devices. The article also discusses research which presents the long-term culture of hepatocytes in conditions that preserve their differentiated state, which is important for such applications as drug development and toxicity testing. Last but not least, the article describes the groundbreaking efforts toward building sophisticated scaffolds for hepatocyte culture that mimic their natural environment, which are based on decellularized tissues and on three-dimensional bioprinting.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.