The core of most power electronic systems involving DC/AC conversion is a voltage source inverter (VSI) that runs on some pulse-width modulation (PWM) strategy. Numerous PWM techniques have been reported in the literature over the past few decades, each having its own merits and limitations. This paper reviews some selected areas of two-level PWM VSI, namely proper utilisation of the DC bus without deteriorating the quality of the output waveform, switching-loss reduction in the linear and over-modulation zones, common-mode voltage and PWM strategies for its reduction or elimination, distortion of the output voltage owing to dead time, and its compensation. These phenomena are explained in brief, followed by discussions on different research works relevant to these areas, and their advantages and disadvantages. Finally, the paper shows prospective directions in which research may continue in these areas in future.
Accurate current polarity detection is a major issue for successful compensation of dead-time distortion in pulse-width-modulated (PWM) voltage source inverter. The present study is concerned with the concept of shift in current-zero-crossing due to dead-time distortion compensation that results in error in current polarity detection and thus causes a problem with regard to the successful continuation of compensation. The phenomenon is analysed in detail, along with its dependence on different factors. The proposed concept is validated in digital simulation and also through experimental verification. The study also recommends the possible correction to be incorporated in view of such zero-crossing shift for achieving proper compensation, especially in case of current-sensor-less compensation techniques.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.