Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  data validation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Global Navigation Satellite System (GNSS) can be used to determine accurate and high-frequency atmospheric parameters, such as Zenith Total Delay (ZTD) or Precipitable Water Vapour (PW), in all-weather conditions. These parameters are often assimilated into Numerical Weather Prediction (NWP) models and used for nowcasting services and climate studies. The effective usage of the ZTDs obtained from a ground-based GNSS receiver’s network in a NWP could fill the gap of insufficient atmospheric water vapour state information. The supply of such information with a latency acceptable for NWP assimilation schemes requires special measures in the GNSS data processing, quality control and distribution. This study is a detailed description of the joint effort of three institutions – Wrocław University of Environmental and Life Sciences, Wrocław University, and the Institute of Meteorology and Water Management – to provide accurate and timely GNSS-based meteorological information. This paper presents accuracy analyses of near real-time GNSS ZTD validated against reference ZTD data: the International GNSS Service (IGS) from a precise GNSS solution, Weather Research and Forecasting (WRF) model, and radiosonde profiles. Data quality statistics were performed for five GNSS stations in Poland over a time span of almost a year (2015). The comparison of near real-time ZTD and IGS shows a mean ZTD station bias of less than 3 mm with a related standard deviation of less than 10 mm. The bias between near real-time ZTD and WRF ZTD is in the range of 5-11 mm and the overall standard deviation is slightly higher than 10 mm. Finally, the comparison of the investigated ZTD against radiosonde showed an average bias at a level of 10 mm, whereas the standard deviation does not exceed 14 mm. Considering the data quality, we assess that the NRT ZTD can be assimilated into NWP models.
2
Content available remote Ontology-Based Semantic Checking of Data
63%
EN
Semantic checking of railway infrastructure information support data is one of the ways to improve the consistency of information system data and, as a result, increase the safety of train traffic. Existing ontological developments have demonstrated the applicability of description logic for modelling railway transport, but have not paid enough attention to the data resources structure and the railway regulatory support. In this work, the formalization of the tabular presentation of data and the rules of railway transport regulations is carried out using the example of a connection track passport and temporary speed restrictions using ontological means, data wrangling and extraction tools. Ontologies of the various formats data resources and railway station infrastructure, tools for converting and extracting data have been developed. The semantic checking of the compliance of railway information system data with regulatory documents in terms of the connection track passport is carried out on the basis of a multi-level concretization model and integration of ontologies. The mechanisms for implementing the constituent ontologies and their integration are demonstrated by an example. Further research includes ontological checking of natural language normative documents of railway transport.
PL
W niniejszym artykule przedstawiono koncepcję walidacji danych po procesie ich transformacji opracowaną na potrzeby wymiany informacji pomiędzy różnymi systemami informatycznymi przetwarzającymi informacje w przedsiębiorstwie produkcyjnym. Scharakteryzowano pokrótce mechanizm konwersji informacji wykorzystywany podczas ich przepływu pomiędzy systemami informatycznymi przedsiębiorstwa. Opisano problematykę kontroli poprawności danych po ich przekształcaniu. Zaprezentowano opracowane rozwiązanie, a także wyniki działania programu go implementującego.
EN
The paper presents the concept of data validation process after their transformation developed for the exchange of information between different systems in a manufacturing company. A brief overview of the mechanism of conversion of information used during their exchange between systems company is depicted. The issues of validation of data after conversion has been described. Developed solution, and the results of its software implementation is presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.