A new approach to the liver segmentation from 3D images is presented and compared to the existing methods in terms of quality and speed of segmentation. The proposed technique is based on 3D deformable model (active surface) combining boundary and region information. The segmentation quality is comparable to the existing methods but the proposed technique is significantly faster. The experimental evaluation was performed on clinical datasets (both MRI and CT), representing typical as well as more challenging to segment liver shapes.
The subject of the article is a discussion on the protection of databases and establishement of big data. The issue of data sets was discussed inter alia in the copyright act, in the database protection act, and in the act on combating unfair competition. The analysis leads to the conclusion, that if the data sets meet the statutory requirements necessary for protection, they are protected. Data sets create big data. For this reason, big data will also be protected, if the statutory conditions required to cover the data sets with protection are met.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper addresses the problem of indexing data for k nearest neighbors (k-nn) search. Given a collection of data objects and a similarity measure the searching goal is to find quickly the k most similar objects to a given query object. We present a top-down indexing method that employs a widely used scheme of indexing algorithms. It starts with the whole set of objects at the root of an indexing tree and iteratively splits data at each level of indexing hierarchy. In the paper two different data models are considered. In the first, objects are represented by vectors from a multi-dimensional vector space. The second, more general, is based on an assumption that objects satisfy only the axioms of a metric space. We propose an iterative k-means algorithm for tree node splitting in case of a vector space and an iterative k-approximate-centers algorithm in case when only a metric space is provided. The experiments show that the iterative k-means splitting procedure accelerates significantly k-nn searching over the one-step procedure used in other indexing structures such as GNAT, SS-tree and M-tree and that the relevant representation of a tree node is an important issue for the performance of the search process. We also combine different search pruning criteria used in BST, GHT nad GNAT structures into one and show that such a combination outperforms significantly each single pruning criterion. The experiments are performed for benchmark data sets of the size up to several hundreds of thousands of objects. The indexing tree with the k-means splitting procedure and the combined search criteria is particularly effective for the largest tested data sets for which this tree accelerates searching up to several thousands times
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.