The prior information constrained impedance inversion is an important tool to improve the inversion effect. With the traditional constrained prior information extracted from logging data by the analytic formula, it is difficult to accurately describe the information of a complex reservoir. In addition, the traditional inversion method is trace-by-trace, which ignores the lateral information contained in seismic data. This paper presents a multichannel seismic impedance inversion method combining logging and seismic. In this method, the dictionary learning method is used to extract the vertical prior information of the formation from the logging data. At the same time, we can learn the dip information from seismic data cube. Under the framework of multichannel inversion, regularization and sparse representation technology are used to simultaneously add the vertical and the transverse distribution prior information into the inversion process. Block coordinate descent method is used to solve the multichannel inversion problem, making the seismic inversion efficient. This method excavates the spatial prior information in a data-driven way and is used for constrained inversion, avoiding the false prior cognition caused by manual interpretation. Through the model and field data testing, it is verified that this method is effective.
System health diagnosis serves as an underpinning enabler for enhanced safety and optimized maintenance tasks in complex assets. In the past four decades, a wide-range of diagnostic methods have been proposed, focusing either on system or component level. Currently, one of the most quickly emerging concepts within the diagnostic community is system level diagnostics. This approach targets in accurately detecting faults and suggesting to the maintainers a component to be replaced in order to restore the system to a healthy state. System level diagnostics is of great value to complex systems whose downtime due to faults is expensive. This paper aims to provide a comprehensive review of the most recent diagnostics approaches applied to hardware systems. The main objective of this paper is to introduce the concept of system level diagnostics and review and evaluate the collated approaches. In order to achieve this, a comprehensive review of the most recent diagnostic methods implemented for hardware systems or components is conducted, highlighting merits and shortfalls.
All assets necessarily suffer wear and tear during operation. Prognostics can assess the current health of a system and predict its remaining life based on features capturing the gradual degradation of its operational capabilities. Prognostics are critical to improve safety, plan successful work, schedule maintenance, and reduce maintenance costs and down time. Prognosis is a relatively new area but has become an important part of Condition-based Maintenance (CBM) of systems. As there are many prognostic techniques, usage must be attuned to particular applications. Broadly stated, prognostic methods are either data-driven, rule based, or model-based. Each approach has advantages and disadvantages; consequently, they are often combined in hybrid applications. A hybrid model can combine some or all model types; thus, more complete information can be gathered, leading to more accurate recognition of the fault state. This approach is especially relevant in systems where the maintainer and operator know some of the failure mechanisms, but the sheer complexity of the assets precludes the development of a complete model-based approach. The paper addresses the process of data aggregation into a contextual awareness hybrid model to get RUL values within logical confidence intervals so that the life cycle of assets can be managed and optimised.
PL
Wszystkie środki techniczne w trakcie użytkowanie podlegają procesom zużycia i starzenia. Metody i narzędzia prognostyczne pozwala na ocenę bieżącego stanu systemu i przewiduje pozostały czas życia, w oparciu o identyfikację stopniowego pogarszania jego możliwości operacyjnych. Prognozowanie jest niezbędne do poprawy bezpieczeństwa, skutecznego planowania i harmonogramowania prac obsługowo-naprawczych oraz obniżenia kosztów konserwacji i przestojów. Prognozowanie jest stosunkowo nowym obszarem, ale stało się ważnym elementem strategii eksploatacji według stanu technicznego (ang. Condition Based Maintenance). Ponieważ istnieje wiele technik prognozowania, ich wykorzystanie musi być dopasowane do poszczególnych zastosowań. Ogólnie mówiąc, metody prognostyczne oparte są albo na analizie danych, albo na regułach albo na modelach. Każde podejście posiada swoje wady i zalety; z tego też względu są one często łączone w ramach zastosowań hybrydowych. Model hybrydowy może łączyć kilka lub wszystkie typy modeli; w ten sposób, można pozyskać pełniejszą informację, prowadząc do bardziej dokładnego rozpoznania zdarzenia. To podejście jest szczególnie istotne w systemach, w których operator i serwisant posiadają wiedzę na temat mechanizmów powstawania wybranych uszkodzeń, ale sama złożoność obiektów technicznych wyklucza opracowanie podejścia zorientowanego modelowo. Artykuł lokuje proces agregacji danych w obszar kontekstowej świadomości modeli hybrydowych, w celu uzyskania wartości przydatności resztkowej RUL (ang. RUL-Remaining Useful Life) w obrębie logicznych przedziałów ufności, tak aby cykl życia obiektów mógł być zarządzany i optymalizowany.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.