This paper presents the problem of optimal design with respect to ductile creep rupture time for rotating disk. The material is described by the Norton-Bailey nonlinear creep law, here generalized for true stresses and logarithmic strains. For complex stress states, the law of similarity of deviators, combined with the Huber-Mises-Hencky hypothesis is applied. The set of four partial differential equations describes the creep conditions of annular disk. The optimal shape of the disk is found using parametric optimisation with one free parameter. The results are compared with disks of uniform thickness.
PL
W niniejszym artykule przedstawiono problem optymalizacji tarczy pierścieniowej ze względu na czas zniszczenia ciągliwego. do opisu materiału stosowano teorię nieliniowego pełzania Nortona-Baileya, uogólnioną dla naprężeń rzeczywistych i odkształceń logarytmicznych. W odniesieniu do złożonych stanów naprężeń stosowano prawo podobieństwa dewiatorów w połączeniu z hipotezą Hubera-Misesa-Hencky'ego. Proces pełzania tarczy wirującej opisuje układ czterech nieliniowych równań różniczkowych. Wyniki otrzymano przez zastosowanie optymalizacji jednoparametrycznej, w odniesieniu do płaskiej tarczy pełnej.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.