Data analysis needs suitable methods of curve extrapolation. The proposed method of Hurwitz-Radon Matrices (MHR) can be used in extrapolation and interpolation of curves in the plane. For example, quotations from the Stock Exchange, the market prices or currency rates form a curve. This paper presents the way of data anticipation and extrapolation via the MHR method and decision making: to buy or not, to sell or not. The proposed method is based on a family of Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns composed of orthogonal vectors. The operator of Hurwitz-Radon (OHR), built from these matrices, is described. Two-dimensional data are represented by the set of curve points. It is shown how to create the orthogonal and discrete OHR and how to use it in a process of data foreseeing and extrapolation. The MHR method interpolates and extrapolates the curve point by point without using any formula or function.
Proposed method, called Probabilistic Nodes Combination (PNC), is the method of 2D data interpolation and extrapolation. Nodes are treated as characteristic points of information retrieval and data forecasting. PNC modeling via nodes combination and parameter γ as probability distribution function enables 2D point extrapolation and interpolation. Two-dimensional information is modeled via nodes combination and some functions as continuous probability distribution functions: polynomial, sine, cosine, tangent, cotangent, logarithm, exponent, arc sin, arc cos, arc tan, arc cot or power function. Extrapolated values are used as the support in data forecasting.
PL
Autorska metoda Probabilistycznej Kombinacji Węzłów- Probabilistic Nodes Combination (PNC) jest wykorzystywana do interpolacji i ekstrapolacji dwuwymiarowych danych. Węzły traktowane są jako punkty charakterystyczne informacji, która ma być odtwarzana lub przewidywana. Dwuwymiarowe dane są interpolowane lub ekstrapolowane z wykorzystaniem różnych funkcji rozkładu prawdopodobieństwa: potęgowych, wielomianowych, wykładniczych, logarytmicznych, trygonometrycznych, cyklometrycznych. W pracy pokazano propozycję metody ekstrapolowania danych jako pomoc w przewidywaniu trendu dla nieznanych wartości.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.