Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  curvature radius
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 59 nr 1
17--26
EN
Adhesive bonding is an excellent alternative to traditional joining techniques such as welding, riveting, and is commonly used in almost every sector of the industry. However, there are many factors that have to be accounted for during joint design to accurately predict strength of the joint. One of these is the design of adhesively bonded joints. The objective of this work is to study the influence of curvature on strength of adhesively bonded curved-lap joints. For that, different radii of curvature were introduced to the end zones of an aluminium sheet to which the adhesive is applied. Then, a scarf lap joint was obtained by increasing the radius of curvature for the same overlap length, and mechanical behaviour of curved and scarf lap joints was studied experimentally. Additionally, in the analyses, the Extended Drucker-Prager material model was used and to verify the finite element model, experiments were carried out. The results show that thickness, overlap length and curvature radius of the adherends have considerable influence on failure loads.
EN
Purpose: Purpose of this paper Technology ECAP belongs to the most efficient technologies for production of materials with ultra-fine grained structure. Its disadvantage consists in necessity to make 4 to 5 passes through the channel of forming tool in order to obtain high degree of deformation needed for grain disintegration. Design/methodology/approach: Newly proposed geometry of the channel makes it possible to achieve up to double amount of deformation during the first pass through deformation tool. Findings: In this manner it is possible to obtain much higher efficiency of the whole process. It is a completely new approach to development of this technology. Research limitations/implications: New geometry of tool has been designed which represents the first step toward application of the given equipment in semi-industrial conditions. Practical implications: Obtained results form good pre-requisite for further development of technology for production of ultra-fine grained materials. Originality/value: Achievement of high amount of deformation already at the first pass through the modified ECAP tool. This will create an ultra-fine grained structure, which makes it possible to obtain required mechanical properties of formability with much lower number of passes. New findings will be applied in the field of forming.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.