This paper describes a discrete adaptive linear quadratic regulator used to load current control in terms of variable DC voltage of inverter. Controller was designed by using linear quadratic optimization method. Adaptive LQR was used because of non-stationarity of the control system caused by Voltage Matching Circuit - VMC. Gain values of the adaptive controller were approximated by using an artificial neural network. The VMC was realized as an additional buck converter integrated with the main inverter. As the load of the 2-level inverter a 3-phase symmetric RL circuit was used. Simulation tests show the behavior of the load current regulation during DC bus voltage level step changes. The dependence between current RMS value and inverter DC bus voltage level was also shown. There were also made a comparison of the traditional 2-level inverter structure with the modified structure uses VMC. Simulation test was made by using Matlab Simulink and PLECS software.
The present paper investigates the feasibility of utilizing the simplified prediction model for finite control set model predictive current control (FCS-MPCC) applied to reluctance synchronous motors (RSMs). The FCS-MPCC exhibits torque and current ripples, and a crucial consideration is the reduction of these ripples by increasing the switching frequency. The algorithm’s computational complexity is tied to the accuracy of the adopted model. Two approaches with varying levels of accuracy in predicting current dependencies concerning changes in the inductance of the RSM are investigated. The findings highlight the potential of employing simplified fixed inductance values for efficient control in drive systems, particularly those amenable to high switching frequencies.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Many researchers have made great efforts to develop DC converter designs, to study how to increase voltage gain with low voltage stress and low ripple current. This paper proposed a DC-DC converter with a high conversion ratio, low voltage stress, and low ripple current based on the combination of two parallel boost converters. Using the interleaving approach, two converters, an inductor-coupled converter, and a conventional converter are connected on both sides of the input source to reduce the ripple of the source current, and the load is shared between them. Voltage gain and voltage stresses across power semiconductors were determined using steady-state analysis. In addition, Input current and output voltage ripple were analyzed. The inductors of this converter operate in continuous conduction mode (CCM). Higher voltage gain does not entail maximum duty cycle levels, which eliminates issues such as diode reverse recovery. The use of a passive clamp circuit reduces the voltage stress of the switch. This allows the use of low-voltage rated switches with low "on-case" impedance, which increases overall system efficiency. Theoretical analysis and mathematical relationships were performed. Finally, to validate the theoretical calculations, this converter was simulated in MATLAB / SIMULINK program. The results were good and largely identical to the theoretical calculations.
PL
Wielu badaczy włożyło wiele wysiłku w opracowanie konstrukcji konwerterów prądu stałego, aby zbadać, jak zwiększyć wzmocnienie napięcia przy niskim napięciu napięciowym i niskim prądzie tętnienia. W artykule zaproponowano konwerter DC-DC o wysokim współczynniku konwersji, niskim naprężeniu napięciowym i niskim prądzie tętnienia opartym na połączeniu dwóch równoległych konwerterów boost. Stosując podejście z przeplotem, dwa konwertery, konwerter sprzężony z cewką indukcyjną i konwerter konwencjonalny są połączone po obu stronach źródła wejściowego w celu zmniejszenia tętnienia prądu źródłowego, a obciążenie jest między nimi dzielone. Wzmocnienie napięciowe i naprężenia napięciowe w półprzewodnikach mocy określono za pomocą analizy stanu ustalonego. Ponadto przeanalizowano tętnienia prądu wejściowego i napięcia wyjściowego. Cewki indukcyjne tego przetwornika działają w trybie przewodzenia ciągłego (CCM). Wyższe wzmocnienie napięcia nie pociąga za sobą maksymalnych poziomów cyklu pracy, co eliminuje problemy, takie jak odzyskiwanie wsteczne diody. Zastosowanie pasywnego obwodu zaciskowego zmniejsza naprężenie napięciowe przełącznika. Pozwala to na stosowanie przełączników niskonapięciowych o niskiej impedancji „w obudowie”, co zwiększa ogólną wydajność systemu. Przeprowadzono analizę teoretyczną i zależności matematyczne. Ostatecznie, aby zweryfikować obliczenia teoretyczne, konwerter ten został zasymulowany w programie MATLAB / SIMULINK. Wyniki były dobre iw dużej mierze identyczne z obliczeniami teoretycznymi.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.