Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Czasopisma help
Lata help
Autorzy help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 244

Liczba wyników na stronie
first rewind previous Strona / 13 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cucumber
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 13 next fast forward last
EN
Regeneration of cucumber plants from leaf explants resulted in a new species phenotype designated mosaic (msc). It is characterized by two types of spots on the leaves (zucchini-like and chlorophyllous) and has many altered morphological and physiological properties including slower growth, smaller organs, poorly germinating or empty seeds and a smaller number of flowers per node. In msc plants the shape of the first leaf is always altered, and in about 76% of the flowers the crown is reduced and distorted to a varying degree. Chloroplasts of the zucchini-like sectors are filled with large starch grains, and some of the embryos die at various stages of development. The msc phenotype is transmitted uniparentally only by the male plant and no segregation is observed in the F2 and subsequent generations. Possible mechanisms responsible for the msc phenotype and its transmission are discussed.
EN
Nitrate uptake in right-side out plasma membrane vesicles isolated from cucumber roots was characterized. Nitrate uptake into vesicles was driven by an artificially imposed pH gradient. The uptake was strongly inhibited by phenylglyoxal, an arginyl residue modificator. Only a slight repression of NO⁻₃ transport in vesicles was observed in the presence of NEM, a thiol group reagent. pCMBS, an other thiol reagent and DEPC, an effector of histidine residue, had no effect on the nitrate transport in plasma membranes. ATP-driven proton transport in vesicles was not significantly affected in the presence of both, phenylglyoxal and DEPC, whereas pCMBS and NEM abolished it almost completely. The possible role of the particular amino acids residues in the active nitrate transport is discussed. NO⁻₃ uptake into vesicles isolated from both, nitrate-induced and nitrate-depleted plant material was higher than that observed in the vesicles obtained from uninduced plants. Thus, isolated vesicles reflect the well-known in vivo response of intact plants on the exogenous nitrogen regime.
EN
For its specific physical and physicochemical properties, the water treated with low-frequency low-pressure glow plasma (GPTW) affects the growth of plants and enhances the phytoavalibility of selenium (Se) ions from the nutrient solution. The basic biometric and physiological parameters of cucumber and the uptake of Se ions applied as selenate (Na2SeO4) from the nutrient solution prepared using GPTW or distilled water (DW) were compared. In the presence of Se, the fresh weight (f.w.) of shoots of plants growing in waterdifferentiated nutrient solutions did not differ, whilst their dry weight (d.w.) and leaf area (LA) were higher in plants grown in the GPTW- than in DW-containing medium. The use of GPTW for preparation of the nutrient solution was associated with a substantial improvement of Se ions phytoavailability, compared to the regular growth medium based on DW. Despite the higher Se bioaccumulation in the GPTW- than in DW-based medium, the phytotoxicity of this element was not enhanced. GPTW-induced Se accumulation was remarkable and hence recommended for further study to understand the detailed mechanism GPTW action.
EN
A sensitive and effective method based on a modified QuECHERS (quick, easy, cheap, effective, rugged, and safe) method for the determination of polyoxin B in cucumber and soil using liquid chromatography tandem–mass spectrometry (LC–MS/MS) was developed and validated. Samples were extracted using 1% formic acid in ultrapure water and purified via reversed-dispersive solid phase extraction (r-dSPE) using C18. Recovery of polyoxin B ranged from 83.0% to 112.1% with relative standard deviation (RSD) (n = 5) of 3.0–5.2%. The limit of quantification (LOQ) and the limit of detection (LOD) were 0.01 and 0.003 mg/kg for cucumber and soil, respectively. The method was subsequently applied for real sample analysis. The dissipation experiments showed that half-lives of polyoxin B in cucumber and soil were 2.5–5.0 days. The terminal residues of polyoxin B at preharvest intervals (PHIs) of 3 days and 5 days in cucumber were less than 0.05 mg/kg. We therefore suggest that the developed method can be extrapolated to other agricultural crops or food for routine analysis. It also can be used to determine the PHIs. Moreover, these results will aid in establishing the maximum residue limit (MRL) for cucumber in China.
EN
This study examined the effects of UV-B radiation and allelochemical stress induced by ferulic acid (FA) on the activity of phenylalanine ammonia lyase (PAL; EC 4.3.1.5) at metabolic and molecular levels in two cucumber genotypes differing in tolerance to cold and disease, in order to determine any interaction between stress effects and genotype response. Stresses were applied simultaneously, sequentially, and singly. In both genotypes, several days of UV radiation retarded growth up to 36%. The effect of FA was not significant. The response to a particular stress, including the effect on PAL activation, was enhanced by simultaneous application of the two stresses. PAL transcription was not correlated with the increase of PAL activity. Exposure to UV-B, FA, and combined UV-B and FA was detrimental to both genotypes but to different extents. The response was not correlated with the genotype of cold and disease sensitivity. PAL activity and its transcription seem to be involved in UV and allelochemical stress, but not related to the plants' tolerance of these stresses.
EN
Abiotic stressors contribute to growth restriction and developmental disorders in plants. Early detection of the first signs of changes in plant functioning is very important. The objective of this study was to identify chlorophyll fluorescence parameters that change under phosphorus deficiency stress in cucumber. In this work, a trail to study the early changes caused by phosphorus deficiency in cucumber plants by analysing their photosynthetic performance is presented. Chlorophyll-a fluorescence (ChF) parameters were measured every 7 days for a period of 28 days. Measurements were made separately on young and old leaves and on cucumber fruit. Parameters that decreased during the stress were: p2G, PIabs, PItotal, REo/CSo, and TRo/CSo. P deficiency decreased total electron carriers per RC (ECo/RC), yields (TRo/ABS (Fv/Fm), ETo/TRo, REo/ETo, ETo/ABS and REo/ABS), fluxes (REo/RC and REo/CSo) and fractional reduction of PSI end electron acceptors, and damaged all photochemical and non-photochemical redox reactions. Principal component analysis revealed a group of ChF parameters that may indicate early phosphorus deficiency in cucumber plants. Our results are used in the discovery of sensitive bioindicators of phosphorus deficiency in cucumber plants. Most JIP test parameters are linked to mathematical equations, so we recommend using of advanced statistical tools, such as principal component analysis, which should be considered very useful for stress identification. It has also been shown to be more effective in multivariate methods compared to univariate statistical methods was demonstrated.
EN
Vegetables are considered to be plants with high water requirements. A greater susceptibility to water deficit occurs in the periods of intensive growth and yield formation. At that time even a slight reduction in water supply can deteriorate yielding, thus those periods are referred to as critical periods in terms of water supply. The aim of this paper has been to analyse the pattern of precipitation deficits for the ground cultivation of cucumber, tomato, beans and peas in the Bydgoszcz region in the thirty-year period 1981-2010. The basic of analysis were results of standard meteorological measurements from the Research Station of the Faculty of Agriculture and Biotechnology ‚Mochełek’, University of Technology and Life Sciences. Values of optimal precipitation for medium soils were calculated according to Klatt. Atmospheric precipitation deficits in subsequent month of selected vegetables cultivation were calculated by diminish between the real and optimal precipitation. The trends of deficiency of precipitation in the examined period were estimated too. Very frequent occurrence of the atmospheric precipitation deficits during the entire cultivation period of selected vegetables, and especially in critical periods was demonstrated. Slight decreasing tendency of precipitation deficits in a vegetation periods was indicated, however in a critical periods in terms of water supply, the trend line remains at a practically constant level. The results obtained indicate the necessity of the irrigation in the cultivation of peas, beans, cucumbers and tomatoes.
|
|
tom 12
|
nr 4
584-594
EN
The complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.
first rewind previous Strona / 13 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.