Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  crossover operators
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A growing number of industrial fields is concerned by complex and multiobjective problems. For this kind of problems, optimal decision making is critical. Decision support systems using fuzzy logic are often used to deal with complex and large decision making problems. However the main drawback is the need of an expert to manually construct the knowledge base. The use of genetic algorithms proved to be an effective way to solve this problem. Genetic algorithms model the life evolution strategy using the Darwin theory. A main problem in genetic algorithms is the premature convergence, and the last enhancements in order to solve this problem include new multi-combinative reproduction techniques. There are two principal ways to perform multi-combinative reproduction within a genetic algorithm, namely the Multi-parent Recombination, Multiple Crossover on Multiple Parents (MCMP); and the Multiple Crossover Per Couple (MCPC). Both techniques try to take the most of the genetic information contained in the parents. This paper explores the possibility to decrease premature convergence in a real/binary like coded genetic algorithm (RBCGA) used in automatic generation of fuzzy knowledge bases (FKBs). The RBCGA uses several crossover mechanisms applied to the same couple of parents. The crossover are also combined in different ways creating a multiple offspring from the same parent genes. The large family concept and the variation of the crossovers should introduce diversity and variation in otherwise prematurely converged populations and hence, keeping the search process active.
PL
Rosnącej liczbie dziedzin, którymi zainteresowany jest przemysł, towarzyszą złożone zagadnienia wieloobiektowe. Dla takich zagadnień optymalne podejmowanie decyzji jest krytyczne. Często dla wsparcia procesu decyzyjnego w złożonych problemach stosuje się układy logiki rozmytej. Kłopotem pozostaje jednak potrzeba manualnego wygenerowania bazy wiedzy poprzez eksperta. Okazuje się, że pewnym rozwiązaniem tego problemu może być użycie algorytmów genetycznych. Algorytmy takie modelują zagadnienie ewolucyjne na podstawie teorii Darwina. Głównym problemem w algorytmach genetycznych jest przedwczesna konwergencja, której próby wyeliminowania oparto na strategii multikombinowanych technik reprodukcji. Występują zasadniczo dwie drogi realizacji techniki reprodukcji: Multiple Crossover on Multiple Parents (MCMP) oraz Multiple Crossover Per Couple (MCPC). Obydwie metody celują w wykorzystanie jak największej ilości informacji genetycznej od rodziców. W artykule zajęto się możliwością ograniczania przedwczesnej konwergencji w rzeczywistym/binarnym kodzie genetycznym (RBCGA) używanym w automatycznymgenerowaniu rozmytych baz wiedzy (FKBs). Algorytm RBCGA stosuje kilka mechanizmów krzyżowania genów w odniesieniu do tej samej pary rodziców. Mechanizmy te przeróżnie kombinowane pozwalają na wielokrotną kreację potomstwa od tej samej pary rodziców. Koncepcja dużej rodziny i różnicowanie krzyżowania powinny wprowadzić dywersyfikację nowogenerowanych pokoleń, które w przeciwnym razie szybko uległyby konwergencji. Zapobieżenie temu zjawisku poprzez strategię multikombinacyjną utrzymuje proces poszukiwania rozwiązania w stanie aktywnym.
PL
Omówiono trzy rodzaje operatorów krzyżowania stosowanych do celów programowania genetycznego: operatory krzyżowania standardowego, krzyżowania zachowującego rozmiar oraz krzyżowania homologicznego. Przedstawiono wyniki porównujące skuteczność tych operatorów w zastosowaniu ich w celach ewolucyjnego generowania gramatyk bezkontekstowych na podstawie przykładów języka. W ramach prezentowanych wyników pokazany został wpływ różnych rodzajów operatorów krzyżowania na rozmiar osobników powstających w wyniku ewolucji, na wartość ich przystosowania, które jest miarą poprawności znalezionego rozwiązania zadanego problemu, oraz na zróżnicowanie powstającej populacji osobników w poszczególnych pokoleniach ewolucji.
EN
Three types of crossover operators used for genetic programming purposes: standard crossover operator, size fair crossover, and homologous crossover are presented in the article. It also analyses the results of the comparison of the effectives of those operators in evolutionary grammatical inference of context-free grammars based on positive and negative language samples. The results include the influence of various crossover operators on the individuals created by the process of evolution, on their fitness value, which is the measure of the correctness of the solution of a given problem, and on the diversity of the resulting population in given generations of the evolution.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.