Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  count data
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A new over-dispersed discrete probability model is introduced, by compounding the Poisson distribution with the weighted Ishita distribution. The statistical properties of the newly introduced distribution have been derived and discussed. Parameter estimation has been done with the application of the maximum likelihood method of estimation, followed by the Monte Carlo simulation procedure to examine the suitability of the ML estimators. In order to verify the applicability of the proposed distribution, a real-life set of data from the medical field has been analysed for modeling a count dataset representing epileptic seizure counts.
EN
The article presents a new probability distribution, created by compounding the Poisson distribution with the weighted exponential distribution. Important mathematical and statistical properties of the distribution have been derived and discussed. The paper describes the proposed model's parameter estimation, performed by means of the maximum likelihood method. Finally, real data sets are analyzed to verify the suitability of the proposed distribution in modeling count data sets representing vaccine adverse events and insurance claims.
3
Content available remote Distributional properties of the negative binomial Lévy process
51%
EN
The geometric distribution leads to a Lévy process parameterized by the probability of success. The resulting negative binomial process (NBP) is a purely jump and non-decreasing process with general negative binomial marginal distributions. We review various stochastic mechanisms leading to this process, and study its distributional structure. These results enable us to establish strong convergence of the NBP in the supremum norm to the gamma process, and lead to a straightforward algorithm for simulating sample paths. We also include a brief discussion of estimation of the NPB parameters, and present an example from hydrology illustrating possible applications of this model.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.