One of the main goals of Explicit Constructive Logic (ECL) is to provide a constructive formulation of Full (Classical) Higher Order Logic LKω that can be seen as a foundation for knowledge representation. ECL is introduced as a subsystem Zω of LKω. The first order case Z1 and the propositional case Z0 of ECL are examined as well. A comparison of constructivism from the point of view of ECL and of the corresponding features of Intuitionistic Logic, and Constructive Paraconsistent Logic is proposed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.