Przewodzące materiały poliuretanowe otrzymywano w syntezie dwuetapowej. W pierwszym etapie syntetyzowano prepolimer uretanowy. W reakcji stosowano 4,4’-diizocyjanian difenylometanu (MDI) oraz oligoeterol (PTMG 1000 lub Rokopol D-2002). W drugim etapie prepolimer poddawano reakcji z przedłużaczem łańcuchów, jakim był 1,4-butanodiol (BDO). Po rozdrobnieniu otrzymane materiały domieszkowano solą LiClO₄ oraz napełniano montmorylonitem przy użyciu wytłaczarki dwuślimakowej. Otrzymane materiały poddano badaniom spektroskopii FT-IR, mechanicznym oraz termomechanicznym. Przewodnictwo jonowe wyznaczono za pomocą spektroskopii impedancyjnej.
EN
Conductive polyurethane composites were prepd. by two-step method consisting in reaction of (p-NCOC₆H₄)₂CH₂ with oligoetherols and further conversion with (HOCH₂CH₂)₂, doped with LiClO₄ and filled with montmorillonite in twin screw extruder. The composites were studied for structure (FT-IR spectroscopy), mech. and thermal properties and ionic cond. The addn. of LiClO₄ resulted in increasing the cond. and deterioration of mech. properties of the composites.
A sensitive, selective and reliable sensing techniques for ammonia (NH3) gas detection have been highly demanded since NH3 is both a commonly utilized gas in various industrial sectors, and considered as a toxic and caustic agent that can threat human health and environment at a certain level of concentrations. In this article, a brief on the fundamental working principles of sensor specifications of the analytes detection techniques relying has been reviewed. Furthermore, the mechanism of NH3 detection and recent progress in the development of advanced carbon nanotubes (CNTs)-based NH3 gas sensors, and their performance towards the hybridization with the conductive polymers was comprehensively reviewed and summarized. Finally, the future outlook for the development of highperformance NH3 sensors was presented in the conclusions part.
PL
Amoniak (NH3) to gaz powszechnie stosowany w różnych sektorach przemysłu, jest toksyczny i żrący, a powyżej określonego poziomu stężeń może zagrozić ludzkiemu zdrowiu i środowisku, dlatego ciągle trwają poszukiwania czułych, selektywnych i niezawodnych metod wykrywania gazów amoniakalnych. W niniejszym artykule dokonano przeglądu specyfikacji i podstawowych zasad działania czujników stosowanych w technikach wykrywania takich analitów. Szczegółowo przeanalizowano też mechanizm wykrywania i niedawny postęp w opracowywaniu zaawansowanych czujników do wykrywania gazu NH3 , opartych na nanorurkach węglowych (CNTs), a także ich modyfikacje obejmujące hybrydyzację z polimerami przewodzącymi. Przedstawiono również perspektywy rozwoju wysoko wydajnych czujników NH3.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.