Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  conclusion-making systems
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 6
IT87--94
EN
The paper describes body balance characteristics needed for neurological diseases classification and for rehabilitation processes controlling during patient recovery processes. These diagnosis factors allow simplify the PSW (Parotec System for Windows) records recognition [1, 2] then a walk-motor disturbances level estimation. The discussed clinical experiments illustrate new methods for Parkinson disease and stroke progress monitoring. This study was based on many observations of patient walk disturbances recorded in PSW files describing the pressure distribution on an insole set of sensors [1, 2, 8]. The gait regular asymmetry in a data spectrum has been noticed as an independent factor from the disease duration and its severity. In majority of analysed cases for Parkinson disease a gravity centre of the body moved into a heel region. Trajectories of foot gravity centre elongation, their irregularities, a floor-contact time and paresis limb loading values increase also were observed. The PSW system has successfully been used for recognition and quantification of walk-motor disturbances, marking the neurological diseases level. Options available in PSW [1, 2] give the user many aims in putting proper diagnosis anyhow, due to simplify the training process of conclusion making unit several methods for data records modifications and the diagnosis factors extraction were also considered.
|
|
tom Vol. 3
MI143--152
EN
Various options available in PSW footprint and walking characteristics measuring equipment [6], [7], give the user many aims in putting diagnosis. A Conclusion-Making Unit (CMU) that has been described in this paper supports the diagnosis automation procedures. Due to simplifying the CMU training process some affords in a field of the input record length reduction have been undertaken. The paper describes an analytical method of the data record description that allows converting discrete data samples into continuous function. This way a redigitalisation of the record can be done, where sampling period is matched with the walk length. This normalization allows reducing the data record length used for fast training of the CMU.
|
|
tom Vol. 3
MI153--159
EN
The paper describes an analytical method of data record description that allows converting samples of discrete data record into continuous function. This operation allows re-sampling the data record with a sampling rate that is adequate to step duration. The record length is limited to an efficient size for training the Conclusion-Making Unit (CMU). Various options available in the PSW equipment [6], [7] give the user many aims in putting diagnosis anyhow, due to simplification of the CMU training process several methods for data records modifications are considered.
|
|
tom Vol. 1
CS 57--63
EN
The paper presents the data base structure where fuzzy logic defines the threshold of the foot abnormality. The conclusion making unit supports Parotec System for Windows (PSW) [1], the diagnostic equipment that allows to discus the diseases factors observed on a patient’s static and dynamic footprint. The fuzzy logic roles are used for pathological features selection. They classify the data records putting them into the most relevant pathology. The presented system allows to enter roles describing the disease instead of giving a strict definition. When number of roles grows the fuzzy threshold is getting the strict value. The early results of the system development are described in the paper. The conclusion making unit has been evaluated by several records. For full evaluation of the system more experiments are planed to be done in clinics.
PL
Praca prezentuje system wspomagania diagnozy wykorzystujący regułową bazę wiedzy z pojęciami rozmytymi. System nie rozpoznaje schorzeń, lecz podpowiada patologie związane z nieprawidłowym (nie fizjologicznym) obciążeniem wybranych stref stopy w statyce i dynamice. Informacją potrzebną do prawidłowego funkcjonowania systemu jest zbiór pomiarów pozyskanych przy użyciu narzędzia Parotec System for Windows (PSW). Drugim elementem wykorzystywanym w procesie wnioskowania jest baza wiedzy z regułami rozmytymi ekstrahowana od lekarza – eksperta. Wiedza zapisywana jest w formie koniunkcji warunków pierwotnych opartych na relacji wartości funkcji filtracji do lingwistycznego pojęcia względnego – oddającego wartość wybranego czynnika do odpowiedniej wartości dla całej populacji zebranej w bazie pomiarów. W dynamicznym procesie wnioskowania udostępniono trzy metody wyznaczania term (trójkąty o równych i nierównych podstawach) obejmujących całą dziedzinę pomiarów, oraz odrzucenie pomiarów obarczonych błędem przypadkowym wykraczających poza odchylenie standardowe wyznaczone funkcją Gaussa. Prezentowany system udostępnia możliwość wprowadzania reguł w sposób opisowy bez konieczności dokładnej analizy wartości wielkości mierzonych przez PSW. W procesie defuzyfikacji wyznaczona jest ostra wartość wynikła z superpozycji wartości warunków pierwotnych składających się na regułę wnioskowania lecz końcowym rezultatem diagnozy jest pojęcie rozmyte opisujące „natężenie” występującej patologii.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.