Every lattice and, in particular, every Boolean algebra is a convexity space with a naturally defined convexity structure. We characterize complete Boolean algebras as the only S3 convexity spaces having an extension property for certain classes of convexity preserving maps. This answers our question posed in [1]. Our characterization provides also a short proof of Sikorski's extension theorem for homomorphisms of Boolean algebras.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.