Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  comparison theorems
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of this paper is to investigate the oscillatory and asymptotic behavior of solutions of a third-order delay difference equation. By using comparison theorems, we deduce oscillation of the difference equation from its relation to certain associated first-order delay difference equations or inequalities. Examples are given to illustrate the main results.
2
100%
EN
We obtain a necessary and sufficient condition for the oscillation of the higher order neutral delay difference equation m(Xn -pnxn-r) + f(n, xg1(n),xg2(n), ...,xg1(n))=0 where m > 1 is an odd integer. As some application of this result, we estabilish three comparison theorems for the oscillation of the above equation.
3
Content available remote Comparison theorems for small deviations of weighted series
100%
EN
We study comparison theorems for small deviation probabilities of weighted series and obtain more refined versions of the known comparison results. In particular, the following consequence is obtained immediately from Theorem 2.1 of the paper. Let a positive random variable X belong to the domain of attraction of a stable law with an index greater than one and let its distribution function be regularly varying at zero with an exponent β > 0. If {Xn}n­1 are independent copies of X, and {an} and {bn} are positive summable sequences such that..[formula].
EN
This paper deals with comparison theorems for oscillatorineess all solutions of the n-th order nonlinear differential inequalities with quasiderivativer and deviatimg argument of a form [formula]
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.