Let \(p\in(1,\infty)\) and \(I=(0,1)\); suppose that \(T\colon L_{p}(I)\rightarrow L_{p}(I)\) is a~compact linear map with trivial kernel and range dense in \(L_{p}(I)\). It is shown that if the Gelfand numbers of \(T\) decay sufficiently quickly, then the action of \(T\) is given by a series with calculable coefficients. The special properties of \(L_{p}(I)\) enable this to be established under weaker conditions on the Gelfand numbers than in earlier work set in the context of more general spaces.
A version of the Arzelà–Ascoli theorem for X being a σ-locally compact Hausdorff space is proved. The result is used in proving compactness of Fredholm, Hammerstein and Urysohn operators. Two fixed point theorems, for Hammerstein and Urysohn operators, are derived on the basis of Schauder fixed point theorem.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.