Sufficient conditions for commutativity of rings are proved. They generalize or are related to certain old results due to I. N. Herstein and others, see [1] and [5].
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let R be a commutative ring with non-zero identity. We say that an element a is an element of R is weakly prime to an ideal I of R if 0 i not equal to ra is an element to I (r is an element to R) implies that r is an element I. If I is a proper ideal of R and w(I) is the set of elements of R that are not weakly prime to I, then we define I to be weakly primal if the set P = w(I) . {0} form an ideal. In this case we also say that I is a P-weakly primal ideal. This paper is devoted to study the weakly primal ideals of a commutative ring. The relationship among the families of weakly prime ideals, primal ideals, and weakly primal ideals of a ring R is considered.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
On a commutative ring R we study outer measures induced by measures on Spec(R). The focus is on examples of such outer measures and on subsets of R that satisfy the Carathéodory condition.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.