This paper presents a significant modification to the AdaSS (Adaptive Splitting and Selection) algorithm, which was developed several years ago. The method is based on the simultaneous partitioning of the feature space and an assignment of a compound classifier to each of the subsets. The original version of the algorithm uses a classifier committee and a majority voting rule to arrive at a decision. The proposed modification replaces the fairly simple fusion method with a combined classifier, which makes a decision based on a weighted combination of the discriminant functions of the individual classifiers selected for the committee. The weights mentioned above are dependent not only on the classifier identifier, but also on the class number. The proposed approach is based on the results of previous works, where it was proven that such a combined classifier method could achieve significantly better results than simple voting systems. The proposed modification was evaluated through computer experiments, carried out on diverse benchmark datasets. The results are very promising in that they show that, for most of the datasets, the proposed method outperforms similar techniques based on the clustering and selection approach.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Jednym z ciekawych i dynamicznie rozwijających się nurtów uczenia maszynowego jest klasyfikacja kombinowana. Opracowywane, w jej ramach, algorytmy starają się w zbudować model systemu klasyfikacyjnego bazującego na klasyfikatorach składowych, tak aby wykorzystać ich najlepsze cechy i kompetencje potrzebne do rozwiązania danego problemu decyzyjnego W takcie konstrukcji tego typu systemów stykamy się z dwoma typami problemów: jak wybrać wartościowy zespół klasyfikatorów oraz w jaki sposób uzyskać decyzje końcową na bazie odpowiedzi członków wspomnianego zespołu klasyfikatorów. W pracy przedstawiono główne przesłanki świadczące o przydatności projektowania tego typu systemów oraz dokonano ich krótkiej charakterystyki problemów projektowych.
EN
Classifier ensemble is the focus of the intense research, because it is recognized as the one of them most efficient classification approach. It is used in the several practical domains as fraud detection, client behavior recognition, medical decision support systems, or technical diagnostic to enumerate only a few. In this conceptual approach, the main effort is focusing on the two main problems. First, how to choose or train valuable and mutually complimentary set of individual classifiers and how to combine their outputs to exploit the strength of each individuals. The work presents a brief survey of the main issues related with the classifier ensemble domain.
This paper presents a significant modification to the AdaSS (Adaptive Splitting and Selection) algorithm, which was developed several years ago. The method is based on the simultaneous partitioning of the feature space and an assignment of a compound classifier to each of the subsets. The original version of the algorithm uses a classifier committee and a majority voting rule to arrive at a decision. The proposed modification replaces the fairly simple fusion method with a combined classifier, which makes a decision based on a weighted combination of the discriminant functions of the individual classifiers selected for the committee. The weights mentioned above are dependent not only on the classifier identifier, but also on the class number. The proposed approach is based on the results of previous works, where it was proven that such a combined classifier method could achieve significantly better results than simple voting systems. The proposed modification was evaluated through computer experiments, carried out on diverse benchmark datasets. The results are very promising in that they show that, for most of the datasets, the proposed method outperforms similar techniques based on the clustering and selection approach.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.