10-O-(N,N-dimethylaminoethyl)-ginkgolide B (XQ-1) is an intermediate for synthesizing 10-O-(N,N-dimethylaminoethyl)-ginkgolide B methanesulfonate (XQ-1H), which is a novel ginkgolide B derivative and is being developed as a platelet-activating factor antagonist. A specific and rapid liquid chromatographic method was developed for the quantitative analysis of XQ-1 and its three related impurities, which were 10-O-(N,N-dimethylaminoethyl)-11,12-seco-ginkgolide B (imp-1), 10-O-(N,N-dimethylaminoethyl)-11,12-seco-3,14-dehydroginkgolide B (imp-2) and 10-O-(N,N-dimethylaminoethyl)-3,14-dehydroginkgolide B (imp-3) simultaneously in XQ-1 samples. Chromatographic separation was achieved on a CN band stationary phase, with the mobile phase consisting of methanol and 20 mM dipotassium hydrogen phosphate (pH 7.5) (50:50, υ/υ) in isocratic elution. The flow rate was 1.0 mL min-1 and detector was set at 220 nm. The method was optimized by the analysis of the samples generated during the forced degradation studies. The XQ-1, imp-1, imp-2, and imp-3 were completely separated within 15 min. The resolutions (Rs) amongst four target compounds were >2. The developed method was validated with respect to specificity, linearity, accuracy, precision, and robustness. The results indicated that the simultaneous LC determination method was readily utilized as a quality control method for XQ-1 sample.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The present study was designed to characterize the possible degradation products of zolpidem tartrate under various stress conditions according to International Conference on Harmonization (ICH) guidelines Q1A(R2). After exposure to light, heat, hydrolysis, and oxidation, the drug significantly degraded under photolytic and acid/base hydrolytic conditions. Degradation resulted in the formation of four key degradants. Degradation products were resolved from each other and the drug by employing an isocratic elution method on Luna C18 column with mobile phase consisting of methanol-10 mM ammonium acetate (68.4:31.6, v/v), wherein pH was adjusted to 5.4 with glacial acetic acid. To characterize the degradation products, a method was extended to LC-MS and a mass fragmentation pattern was established using single quadrupole. The degradants were identified as zolpacid, oxozolpidem, zolpaldehyde, and zolpyridine. Finally, the most possible degradation mechanism of zolpidem tartrate in different environments was proposed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.