Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  coercive operator
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
nr 2
153-160
EN
In this paper we consider a second order differential equation involving the difference of two monotone operators. Using an auxiliary equation, a priori bounds and a compactness argument we show that the differential equation has a local solution. An example is also presented in detail.
|
2000
|
tom 73
|
nr 1
69-92
EN
We consider a quasilinear vector differential equation which involves the p-Laplacian and a maximal monotone map. The boundary conditions are nonlinear and are determined by a generally multivalued, maximal monotone map. We prove two existence theorems. The first assumes that the maximal monotone map involved is everywhere defined and in the second we drop this requirement at the expense of strengthening the growth hypothesis on the vector field. The proofs are based on the theory of operators of monotone type and on the Leray-Schauder fixed point theorem. At the end we present some special cases (including the classical Dirichlet, Neumann and periodic problems), which illustrate the general and unifying features of our work.
EN
We consider a quasilinear vector differential equation with maximal monotone term and periodic boundary conditions. Approximating the maximal monotone operator with its Yosida approximation, we introduce an auxiliary problem which we solve using techniques from the theory of nonlinear monotone operators and the Leray-Schauder principle. To obtain a solution of the original problem we pass to the limit as the parameter λ > 0 of the Yosida approximation tends to zero.
4
Content available Extremal solutions for nonlinear neumann problems
63%
EN
In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.