In the paper, tracing the traditional Hilbert-style syntactic account of logics, a syntactic characteristic of a closure operation defined on a complete lattice follows. The approach is based on observation that the role of rule of inference for a given consequence operation may be played by an ordinary binary relation on the complete lattice on which the closure operation is defined.
We propose the notion of flocks, which formerly were introduced only in based algebras, for any universal algebra. This generalization keeps the main properties we know from vector spaces, e.g. a closure system that extends the subalgebra one. It comes from the idempotent elementary functions, we call "interpolators", that in case of vector spaces merely are linear functions with normalized coefficients. The main example, we consider outside vector spaces, concerns Boolean algebras, where flocks form "local" algebras with a sparseness similar to the one of vector spaces. We also outline the problem of generalizing the Segre transformations of based algebras, which used certain flocks, in order to approach a general transformation notion.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For an algebraic structure A = (A, F, R) of type τ and a set Σ of open formulas of the first order language L(τ), the concept of Σ-closed subset of A was introduced in [3]. The set C Σ(A) of all Σ-closed subsets of A forms a complete lattice whose properties were studied in [3], [4] and [5]. Algebraic structures A, B of type τ are called CΣ-isomorphic (or Σ-isomorphic in [3]) if the lattices CΣ(A) and CΣ(B) are isomorphic. The CΣ-isomorphisms are investigated for so-called Σ-separable algebraic structures in [3]. The study of the Σ-isomorphisms of algebraic structures is continued in this paper. We introduce the concepts of Σ-genomorphism and Σ-isogenomorphism of algebraic structures and we formulate a sufficient condition under which two structures are isomorphic. We show that for Σ-separable structures the condition is also necessary. Further, we introduce the concepts of Σ-morphism, congruential E -morphism and congruence induced by a congruential Σ-morphism. We also prove Theorem on Σ-genomorphism and Theorem on Σ-morphism.
Intervals in binary or n-ary relations or other discrete structures generalize the concept of interval in an ordered set. They are defined abstractly as closed sets of a closure system on a set V, satisfying certain axioms. Decompositions are partitions of V whose blocks are intervals, and they form an algebraic semimodular lattice. Lattice-theoretical properties of decompositions are explored, and connections with particular types of intervals are established.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Intervals in binary or n-ary relations or other discrete structures generalize the concept of an interval in a linearly ordered set. They are defined abstractly as closed sets of a closure system on a set, satisfying certain axioms. Join-irreducible partitions into intervals are characterized in the lattice of all interval decompositions. This result is used to show that the lattice of interval decompositions is balanced, and the case when this lattice is distributive is also characterised.