Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  classifier ensembles
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Potential Contour Ensembles
100%
|
|
tom Vol. 24
113--121
EN
In the paper a contour ensemble image segmentation concept is presented. It bases on the previously observed relationship between contours and classifiers. Because of the specificity of the active contour segmentation the method requires a special procedure to obtain ensemble members with desired properties. In this work it is achieved by early stopping of randomized optimization algorithm. The results of the method are illustrated with a practical problem of heart ventricle segmentation by means of active potential contours. Automatically found contours may be of use in a process of pulmonary embolism diagnosis.
EN
As the online social network technology is gaining all time high popularity and usage, the malicious behavior and attacks of spammers are getting smarter and difficult to track. The newer spamming approaches using the social engineering concepts are making traditional spam and spammer detection techniques obsolete. Especially, content-based filtering of spam messages and spammer profiles in online social networks is becoming difficult. Newer approaches for spammer detection using topological features are gaining attention. Further, the evaluation of ensemble classifiers for detection of spammers over social networking behavior-based features is still in its infancy. In this paper, we present an ensemble learning method for online social network security by evaluating the performance of some basic ensemble classifiers over novel community-based social networking features of legitimate users and spammers in online social networks. The proposed method aims to identify topological and community-based features from users’ interaction network and uses popular classifier ensembles – bagging and boosting to identify spammers in online social networks. Experimental evaluation of the proposed method is done over a real-world data set with artificial spammers that follow a behavior as reported in earlier literature. The experimental results reveal that the identified features are highly discriminative to identify spammers in online social networks.
EN
This paper presents a medical diagnosis support system based on an ensemble of single parameter k–NN classifiers [1]. System was verified on a database containing real blood test results of diagnosed patients with a liver fibrosis. This dataset contains problems typical to a real medical data – especially missing values. Paper also describes the process of selecting a subset of parameters used for further evaluation (feature selection/elimination algorithm). Complete database contains many parameters, but not all are important for diagnosis, thus eliminating them is an important step. A comparison of proposed method of classification and feature selection with methods known from literature has also been presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.