Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  circular Hough transform
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
nr 3
264-270
PL
W artykule przedstawiono zagadnienia zastosowania transformaty Hougha w procesie rozpoznawania i zliczania monet Narodowego Banku Polskiego. Wykorzystując środowisko MATLAB oraz zagadnienia dotyczące cyfrowego przetwarzania obrazów i kołową transformatę Hougha, zaprojektowano aplikację do rozpoznania i zliczania monet dla obrazów statycznych oraz przechwyconych ze strumienia wideo.
EN
Paper deals with the implementation of circular Hough transform for automated coins counting with the use MATLAB® environment.
EN
Brain aneurysm is one of the most life-threatening events, which is associated with a high rate of mortality and disability. There are many factors, which specify the best treatment option for each particular patient. In this paper, an automatic computer-aided extraction algorithm for brain aneurysm, from fused digital subtraction angiography (DSA) images is proposed. In this algorithm, firstly, to remove vessel structure, morphological operations based on multi-directional structure elements and nonlinear diffusion filtering are used. Then, by applying circular Hough transform and region growing algorithms, the aneurysm extraction procedure is performed. In this step, to overcome to poor edge gradient of aneurysm, we define a labeled diffused image which specifies the region growing conditions. Finally, by using morphological operators, the aneurysm extraction performance of our algorithm is improved. In addition, the radius of extracted aneurysm is defined and reported as a geometric feature. The experimental results indicate that our proposed algorithm obtains accuracy rate of 77.5% for the aneurysm extraction on 30 abnormal cases.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.