Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  chondryty zwyczajne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available O przewodności cieplnej meteorytu Jezersko
100%
PL
Praca prezentuje wyniki przewidywań teoretycznych przewodności cieplnej (K) meteorytu Jezersko, sklasyfikowanego jako chondryt zwyczajny H4. Przewidywania oparto na wybranych modelach skał i różnych zależnościach teoretycznych i empirycznych. Wykorzystano skład modalny chondrytu Jezersko ustalony przez autora oraz literaturowe dane o przewodności cieplnej minerałów składowych meteorytu i jego porowatości (P). Stosując wymienione metody, określono przewodność cieplną szkieletu ziarnowego meteorytu i jego globalną przewodność cieplną, wykorzystując także przewidywane wartości dyfuzyjności cieplnej (D). Wyniki potwierdzają znane prawidłowości dotyczące skał ziemskich i meteorytów, że współczynnik porowatości skały i materia wypełniająca pory silnie wpływają na przewodność cieplną. Model średniej geometrycznej przewiduje dla szkieletu ziarnowego meteorytu Jezersko wartość przewodności cieplnej 4,35 W m−1 K−1, a średnia z dwóch modeli warstwowych: modelu średniej harmonicznej i modelu średniej arytmetycznej wartość 4,9 W m−1 K−1 dla temperatury 300 K. Globalna przewodność cieplna meteorytu Jezersko (K) według modelu średniej geometrycznej w temperaturze 300 K wynosi 2,6 W m−1 K−1 dla ciśnienia powietrza 1 atm, a 1,0 W m−1 K−1 dla próżni. Model Hashina–Shtrikmana przewiduje wartości K: 2,4 W m−1 K−1 i 1,9 W m−1 K−1, model Clausiusa–Mossottiego – wartości: 2,2 W m−1 K−1 i 1,9 W m−1 K−1, natomiast modele warstwowe skał – wartości: 2,1 W m−1 K−1 i 2,0 W m−1 K−1 dla temperatury 300 K i powietrza pod ciśnieniem 1 atm oraz dla próżni. Zależność pomiędzy przewodnością cieplną i porowatością wskazuje średnią wartość K dla meteorytu Jezersko dla próżni: 1,18 W m−1 K−1, a zależność pomiędzy przewodnością cieplną i dyfuzyjnością cieplną wskazuje wartość K: 1,12 W m−1 K−1 dla zakresu 200–300 K dla próżni, a w przypadku powietrza pod ciśnieniem normalnym wartość: 2,57 W m−1 K−1. Średnia wartość przewodności cieplnej chondrytu Jezersko dla wszystkich przewidywań wynosi w przypadku temperatury ~300 K i ciśnienia powietrza 1 atm: 2,45 ± 0,30 W m−1 K−1, a w przedziale temperatur 200–300 K i próżni: 1,40 ± 0,40 W m−1 K−1. Przewidywane wartości globalnej przewodności cieplnej meteorytu Jezersko dla powietrza i próżni są w zakresie wartości ostatnio prezentowanych przez Soini i in. (2020) dla grupy H4 chondrytów zwyczajnych: 2,8 ± 0,6 W m−1 K−1, wartość średnia K przy wypełnieniu porów przez powietrze pod ciśnieniem 1 atm, oraz 1,9 ± 1,0 W m−1 K−1, wartość średnia K dla zakresu temperatur: 200–300 K, gdy ośrodkiem wypełniającym pory jest próżnia.
EN
The thermal conductivity (K) of Jezersko H4 meteorite was predicted by various models of rocks, using literature data on the chemical composition, porosity (P), and by relationships between thermal conductivity and porosity, and between thermal conductivity and thermal diffusivity (D). The results confirm that the porosity of the chondrite and air pressure significantly affect thermal conductivity. The thermal conductivity of the chondrite skeleton/matrix predicted by the modal composition of the meteorite and by the geometric mean model is equal to 4.35 W m−1 K−1, and by arithmetic and harmonic mean models: 4.9 W m−1 K−1at 300 K. Bulk thermal conductivity of the meteorite predicted by the geometric mean model is equal to 2.6 W m-1 K-1 for air pressure of 1 atm, and 1.0 W m−1 K−1in vacuum at 300 K. The Hashin–Shtrikman model predicts the values: 2.4 and 1.9 W m−1 K−1, the Clausius–Mossotti model: 2.2 and 1.9 W m-1 K-1, and the mean of two-layer models: 2.1 and 2.0 W m−1 K−1 at 300 K, for air pressure of 1 atm, and in vacuum, respectively. The relationships between thermal conductivity and porosity based on experimental data for ordinary chondrites indicate a mean K value for bulk thermal conductivity of the Jezersko meteorite in vacuum: 1.18 W m−1 K−1, and between thermal conductivity and thermal diffusivity the mean value: 1.12 W m−1 K−1at 200–300 K. The mean value for all predictions for bulk thermal conductivity of the meteorite for air at 1 atm is equal to 2.45 ± 0.30 W m−1 K−1 (range: 2.0–2.9 W m−1 K−1) at 300 K, and in vacuum: 1.40 ± 0.40 W m−1 K−1 (range: 0.95–2.0 W m−1 K−1) at 200–300 K. Predicted values of bulk thermal conductivity of the Jezersko meteorite, for air and in vacuum, are in the range of values recently reported by Soini et al. (2020) for the H4 group of chondrites: 2.8 ± 0.6 W m−1 K−1, mean K for air at 1 atm, and 1.9 ± 1.0 W m−1 K−1 mean K value in vacuum at 200–300 K.
EN
The meteorite fell on August 25, 1994, near the small village of Baszkówka, ca. 25 km south-west from the centre of Warszawa (Poland). The fall was observed by people living there, therefore the stone was found at once 25 cm under the surface of the soft cultivated soil. It was the not damaged, oriented stone of 15.5 kg, covered with a fusion crust decorated by numerous, radial regmaglypts. The meteorite is classified as L5 ordinary, unshocked (Sl) chondrite. The main silicate components of the meteorite are olivine (chrysolite; 20-25% Fa) and pyroxene (bronzite ca. 20% Fs). In addition to kamacite (alpha-Fe with ca. 5.5% Ni) and troilite, some rare grains of chromite and very rare native Cu grains were found.
PL
Pełna lista polskich meteorytów jest uboga, liczy niespełna 20 okazów, w tym ponad połowa to znaleziska. Meteoryt Baszkówka spadł 25 sierpnia 1994 r., po południu, w pobliżu Warszawy, na świeżo zaorane pole. Dzięki bardzo szczęśliwemu zbiegowi okoliczności meteoryt nie rozpadł się, upadek jego został zauważony. Meteoryt został szybko odnaleziony i zabezpieczony. jest to pojedynczy okaz o masie 15,5 kg i kształcie kapelusza grzyba o średnicy 25-30 cm i grubości około 18 cm. Na ponad 90% powierzchni pokryty jest czarną polewą. Bardziej wypukła strona okazu jest stożkowata, pokryta głębokimi bruzdkami (regmagliptami) rozchodzącymi się promieniście od wierzchołka ku krawędziom, co świadczy o orientowanym spadku meteorytu. W miejscach pozbawionych polewy widoczna jest ziarnista skała koloru szarooliwkowego z rdzawymi plamkami. Gołym okiem można zaobserwować chropowate kuleczki-chondry, które mają do kilku mm średnicy i stanowią ponad 30% objętości okazu. Badaniami mikroskopowymi stwierdzono, że przestrzeń między chondrami wypełnina jest fragmentami chondr, okruchami skalnymi, pojedynczymi kryształami, a także skupieniami minerałów nieprzezroczystych, które stanowią około 10% objętości, i charakteryzuje się licznymi pustkami, co tłumaczy kruchość meteorytu i jego mały ciężar objętościowy - 2.9 g/cm3. Obserwowane pod mikroskopem obrazy chondr z meteorytu Baszkówka są bardzo zróżnicowane, w większości jednak podobne do opisywanych wcześniej w innych chondrytach; są to chondry porfirowe z kryształami oliwinów oraz piroksenów, ekscentryczno-promieniste chondry piroksenowe, belkowe chondry oliwinowe. Osobliwością Baszkówki jest "kwiecista" porfirowa chondra oliwinowa. Głównymi składnikami mineralnymi meteorytu Baszkówka są: oliwiny (chryzolit z 20-25% Fa) i pirokseny (bronzyt z około 20%Fs), następnie plagioklazy, żelazo z zawartością około 5,5% Ni, troilit oraz niewielkie ilości chromitu i śladowe ilości miedzi rodzimej. Wykonane badania wykazały, że meteoryt Baszkówki jest chondrytem zwyczajnym, który sklasyfikowano jako chondryt L5 oraz jako nie zmieniony zderzeniowo meteoryt S1. Ze wzgledu na niejednoznaczność niektórych cech (zawartość żelaza metalicznego i siarczkowego, skład chemiczny oliwinów), lokujących go na pograniczu grup L i H, niezbędne są dalsze badania. Meteoryt został zgłoszony do światowego rejestru w Instytucie Maxa Plancka w Moguncji. Okaz jest własnością Państwowego Instytutu Geologicznego i znajduje się w Muzeum Geologicznym PIG w Warszawie.
PL
W niniejszej pracy przedstawione zostały wyniki badań meteorytów i próbek biologicznych, przeprowadzonych w ostatnim czasie w kierowanym przeze mnie Laboratorium Spektroskopii Mössbauerowskiej. Badania te dotyczyły między innymi opracowania nowej metody pozwalającej na dokonywanie wstępnej klasyfikacji chondrytów zwyczajnych. Równolegle do badań dotyczących meteorytów zostało zaproponowane użycie spektroskopii mössbauerowskiej do badania próbek biologicznych. Widma mössbauerowskie chondrytów zwyczajnych składają się z dwóch dubletów ze względu na obecność żelaza paramagnetycznego w oliwinach i piroksenach oraz dwóch sekstetów pochodzących od magnetycznie uporządkowanego żelaza obecnego w fazach metalicznych i troilicie. Powierzchnie spektralne różnych faz mineralogicznych w meteorytach, określone przez zastosowanie spektroskopii mössbauerowskiej, są proporcjonalne do liczby atomów żelaza w danej fazie mineralogicznej. Ta właściwość widm mössbauerowskich stanowiła podstawę do skonstruowania metody klasyfikacji chondrytów zwyczajnych. Metoda ta wykorzystuje pola powierzchni spektralnych widm mössbauerowskich, które analizowane są za pomocą wielowymiarowej analizy dyskryminacyjnej i odległości Mahalanobis. Metoda ta nosi nazwę 4M i pozwala określić prawdopodobieństwo przynależności chondrytu zwyczajnego do danego typu - H, L lub LL. Spektroskopia mössbauerowska nie jest rutynowo stosowana do oznaczania stężenia żelaza. Ponieważ jednak ta metoda nie wymaga wstępnej obróbki próbek przed pomiarem, może mieć ona ogromne znaczenie dla oceny stężenia żelaza w próbkach, które można następnie wykorzystać do dalszych badań. Próbki biologiczne są tego dobrym przykładem. Uważa się, że żelazo może odgrywać ważną rolę w neurodegeneracji. W pracy przedstawione zostały wyniki badań porównawczych obszarów ludzkiego mózgu (kontrolnych i patologicznych), przeprowadzonych za pomocą technik spektroskopii mössbauerowskiej i obrazowania metodą rezonansu magnetycznego. Spektroskopia mössbauerowska wykazała wyższe stężenie żelaza w atypowym parkinsonizmie (nazywanym postępującym porażeniem nadjądrowym) w obszarach mózgu takich jak istota czarna (substantia nigra) oraz gałka blada (globus pallidus) w stosunku do próbek stanowiących grupę kontrolną. W pozostałych chorobach neurodegeneracyjnych nie zarejestrowano wzrostu stężenia żelaza w tkankach mózgowych. Ze względu na fakt, że określenie roli żelaza może wnieść bardzo wiele w zrozumienie mechanizmów powstawania i rozwoju chorób neurodegeneracyjnych, badania mössbauerowskie próbek mózgowych stanowią ciekawy i perspektywiczny kierunek badań, który wymaga przeprowadzenia dalszych pomiarów i analiz.
EN
This work presents the recent research results related to meteorites and biological samples conducted in the Mössbauer Spectroscopy Laboratory led by the Author. These studies concerned, among others, the development of a new method allowing for the preliminary classification of ordinary chondrites. Parallel to the research on meteorites, it was proposed to use Mössbauer spectroscopy to study biological samples. The Mössbauer spectra of ordinary chondrites consist of two doublets due to the presence of paramagnetic iron in olivines and pyroxenes and two sextets derived from magnetically ordered iron present in metallic and troilite phases. The spectral areas of various mineralogical phases in meteorites; determined by the use of Mössbauer spectroscopy; are proportional to the number of iron atoms in this mineralogical phase. This property of the Mössbauer spectra formed the basis for constructing a method for classifying ordinary chondrites. This method uses the spectral surface areas of the Mössbauer spectra, which are analysed using multidimensional discriminant analysis and Mahalanobis distances. This method is called 4M and allows one to determine the probability of belonging to one of the types of ordinary chondrites - H, L or LL. Mössbauer spectroscopy in not routinely used to determine iron concentration. However, as this method does not require pre-treatment of samples prior to measurements, it can be of great importance for assessing iron in samples that can then be used for further testing. Here, biological samples are a good example. It is believed that iron can play an important role in neurodegeneration. Thus, the work presents the results of comparative studies of areas of the human brain (control and pathological) carried out using Mössbauer spectroscopy techniques and magnetic resonance imaging. Mössbauer spectroscopy showed a higher concentration of iron in atypical parkinsonism (called progressive supranuclear palsy) in areas of the brain such as substantia nigra and globus pallidus compared to control group samples. In other neurodegenerative diseases, no increase in iron concentration in brain tissues was recorded. Due to the fact that determining the role of iron can contribute a lot to understanding the mechanisms of the formation and development of neurodegenerative diseases, Mössbauer studies of brain samples are an interesting direction of research that requires further measurements and analyses.
4
Content available remote Poszukiwania nowych zasobów surowców w układzie słonecznym
67%
PL
W artykule wskazano potencjalne miejsca poszukiwania nowych złóż surowców w Układzie Słonecznym, ze szczególnym uwzględnieniem pasa planetoid. Przedstawiono zalety pasa planetoid oraz źródła informacji o znajdujących się w nim ciałach. Analizowano skład chondrytów zwyczajnych, grupy meteorytów pochodzących z planetoid, w celu określenia zawartości platynowców. Wysoka koncentracja tych metali na poziomie 8-21 ppm odpowiada zawartości platynowców w obecnie eksploatowanych złożach (3,8-22,0 ppm). Przyjmując, że planetoidy zbudowane są ze skał odpowiadających składem chondrytom zwyczajnym, oszacowano potencjalne zasoby platynowców pochodzących z przykładowych planetoid. Obliczono także czas na który wystarczyłyby te zasoby, przy założeniu obecnego zapotrzebowania na metale z grupy platyny.
EN
In this article, the prospective places of finding new natural resources in the Solar System are shown with great stress placed on the asteroid belt. The advantages of and the sources of information about asteroids are described. Based on the composition of ordinary chondrites, groups of meteorites originated from asteroids, the Platinum Group Metal content is determined. High concentration of these metals (8-21 ppm) corresponds with the PGM content in today's mining deposits (3.8-22.0 ppm). Assuming that asteroids are parent bodies of ordinary chondrites and both have the same chemical composition, the possible resources from asteroids are estimated. Knowing today's demand for PGM, the time of utilization of these reserves is calculated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.