Purpose: The aim of this paper is to find in a numerical way the trajectories and kinetic energies gained by electrons, protons and deuterons accelerated in the laser or maser chirped radiation propagating in a vacuum, with an additionally applied external static axial magnetic field. The accelerated particles to the well defined energies are of interest in many applications, among others in medicine or in processing of different materials. Design/methodology/approach: The acceleration processes of electrons, protons and deuterons were found to be strongly depending on the way the frequency of the laser or maser radiation changes in time. In order to design the realistic acceleration processes the appropriate parameters of a laser or maser and a static magnetic field were used. Findings: The quantitative illustrations of the calculation results in a graphical form enable to discuss the impacts of the chirping effect on the acceleration process of electrons, protons and deuterons. It was found that the rate at which a particle gains the energy depends not only on the particle’s mass but also on the laser radiation frequency variation rate. Due to the different rate at which a relativistic mass of an electron, proton or deuteron increases during the acceleration process the rate at which chirped frequency decreases in time should be different. Research limitations/implications: Limits in the gained energy by the accelerated particles are a consequence of the limits in the available at present the laser or maser beam energy and the static magnetic field intensity. Originality/value: The authors have found, in an exact numerical way, the values of the acceleration equipment parameters which should be applied to obtain the desired energy of the accelerated particles. It is explained why the rate at which a particle gains the energy depends on the way the radiation frequency varies in time.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.