The aim of the study was to propose a relatively simple central pattern generator (CPG) model, which can be used to control a lower limb exoskeleton. The mentioned generator and the simulation model of the human gait were developed based on experimental observations of the healthy volunteer's gait recorded using a motion tracking system. In order to reproduce the correct movements of the exoskeleton segments, time series of angles in the joints corresponding to the hip and knee joints were calculated based on tracing the trajectories generated by the CPG and the inverse kinematic relations. The proposed model can be implemented to control the lower limb (extremity) exoskeleton and assist various types of gait abnormality in patients with different motor dysfunction by means of changing the parameters of the control system. The presented experimental data, the developed gait simulation model, and the results of numerical simulations can be treated as guidelines for further improvement of the proposed model and its application in the exoskeleton control system. Although the study is mainly focused on rehabilitation applications, the proposed model is general and can be used also for other purposes such as control of bipedal and multi-legged robots.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Neural networks composed of two or four cells with combined, electrical and inhibitory, synapses and realized for various network topologies were examined. The aim of this study was to determine a set of phases of oscillatory cycle in which different patterns of activity, characteristic for such networks, can be switched under an external stimulus. In particular, we studied susceptibility of switching between in-phase (IP) and anti-phase (AP) patterns (and vice versa). Our results demonstrate that windows of switching between patterns are similar for networks with electrical and mixed synapses and, in general, relatively independent of the network topology. The only effect of the network topology is an increase of the robustness of the AP pattern in networks of ring-like connectivity. The switching window width and thereby the robustness of the transitions between patterns decreases with the increase of the electrical coupling strength.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.