Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  centralizer
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On (…)-centralizers of semiprime rings
100%
EN
Let R be a semiprime ring with center Z(R) and (…) be a surjective ho-omorphism. In this paper, we prove that T is a (…)-centralizer if one of the following holds: (…).
2
Content available remote Green’s relations in the commutative centralizers of monounary algebras
75%
EN
The paper deals with the monounary algebras for which the second centralizer equals the first centralizer. We describe Green’s relations on the semigroup C, where C is the centralizer of such algebra.
EN
The concept of operator stability on finite-dimensional vector spaces V was generalized in the past into several directions. In particular, operator-semistable and self-decomposable laws and self-similar processes were investigated and the underlying vector space V may be replaced by a simply connected nilpotent Lie group G. This motivates investigations of certain linear subgroups of GL (V) and Aut (G), respectively, the decomposability group of a full probability μ and its compact normal subgroup, the invariance group. Using some basic properties of algebraic groups, the structure of normalizers and centralizers of compact matrix groups is analyzed and applied to the above-mentioned set-up, proving the existence and describing the shape of exponents and of commuting exponents of (operator-) semistable laws. Further applications are mentioned, in particular for operator self-decomposable laws and self-similar processes.
4
Content available remote On Jordan triple α-* centralizers of semiprime rings
63%
EN
Let R be a 2-torsion free semiprime ring equipped with an involution *. An additive mapping T : R → R is called a left (resp. right) Jordan α-* centralizer associated with a function α : R → R if T(x2) = T(x)α(x*) (resp. T(x2) = α(x*)T(x)) holds for all x (…) R. If T is both left and right Jordan α-* centralizer of R, then it is called Jordan α-* centralizer of R. In the present paper it is shown that if α is an automorphism of R, and T : R → R is an additive mapping such that 2T(xyx) = T(x)α(y*x*) + α(x*y*)T(x) holds for all x; y (…) R, then T is a Jordan α-* centralizer of R.
5
Content available remote A note centralizers in semiprime rings
63%
EN
The purpose of this paper is to prove the following result: Let R be a (m+n + 2)! and 3m2n + 3mn2 + 4m2 + 4n2 +10mn-torsion free semiprime ring with an identity element and let T : R -R be an additive mapping such that 3T(xm+n+1) = T(x)xm+n + xmT(x)xn + xm=nT(x) is fulfilled for all x is an element R and some fixed nonnegative integers m and n, m+n=0. In this case T is a centralizer.
6
Content available remote Jordan structure on prime rings with centralizers
51%
EN
Our object in this paper is to study the generalization of Borut Zalar result in [1] on Jordan centralizer of semiprime rings by prove the following result: Let R be a prime of characteristic different from 2, and U be a Jordan ideal of R. If T is an additive mapping from R to itself satisfying the following condition T(ur + ru) = uT(r) + T(r)u, then T(ur) = uT(r), for all r is an element of R, u is an element of U.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.