The unusual combination of high hardness and very low friction coefficient are the most attractive tribological parameters of DLC (diamond-like carbon) layers. However, their usability is strongly restricted by the limited thickness due to high residual stress. The main goal of the presented work was to obtain thick, wear resistant and well adherent DLC layers while keeping their perfect friction parameters. As a proposed solution a Ti–TixCy gradient layer was manufactured as the adhesion improving interlayer followed by a thick diamond-like carbon film. This kind of combination seems to be very promising for many applications, where dry friction conditions for highly loaded elements can be observed. Both layers were obtained in one process using a hybrid deposition system combining PVD and CVD techniques in one reaction chamber. The investigation was performed on nitrided samples made from X53CrMnNiN21-9 valve steel. Structural features, surface topography, tribological and mechanical properties of manufactured layers were evaluated. The results of the investigation confirmed that the presented deposition technique makes it possible to manufacture thick and well adherent carbon layers with high hardness and very good tribological parameters. Preliminary investigation results prove the possibility of application of presented technology in automotive industry.
In modern nanomaterial production, including those for medical purposes, carbon based materials are important, due to their inert nature and interesting properties. The essential attribute for biomaterials is their biocompatibility, which indicates way of interactions with host cells and body fluids. The aim of our work was to analyze two types of model carbon layers differing primarily in topography, and developing their interactions with blood plasma proteins. The first layer was formed of pyrolytic carbon C (CVD) and the second was constructed of multi-walled carbon nanotubes obtained by electrophoretic deposition (EPD), both set on a Ti support. The performed complex studies of carbon layers demonstrate significant dissimilarities regarding their interaction with chosen blood proteins, and points to the differences related to the origin of a protein: whether it is animal or human. However the basic examinations, such as: wettability test and nano sctatch tests were not sufficient to explain the material properties. In contrast, Raman microspectroscopy thoroughly decodes the phenomena occurring at the carbon structures in contact with the selected blood proteins. The 2D correlation method selects the most intense interaction and points out the different mechanism of interactions of proteins with the nanocarbon surfaces and differentiation due to the nature of the protein and its source: animal or human. The 2D correlation of the Raman spectra of the MWCNT layer+HSA interphase proves an increase in albumin β-conformation. The presented results explain the unique properties of the Clayers (CVD) in contact with human albumin.
Tematyka pracy jest związana z badaniami, których celem jest zapewnienie optymalnych właściwości tworzyw polimerowych, które obecnie w coraz większym stopniu zastępują w technice metale i ich stopy oraz szkło i ceramikę. Istotnym walorem w tych zastosowaniach jest ich mały ciężar właściwy, dobra odporność na korozję, możliwość precyzyjnego i taniego formowania elementów mechanicznych. Wykonuje się z nich uszczelki, amortyzatory, elementy stosowane w lotnictwie, przemyśle chemicznym, elektrycznym i samochodowym. Pewne ograniczenia w stosowaniu wynikają z ich słabych właściwości powierzchniowych, takich jak mała twardość, mała odporność na ścieranie i zarysowanie. Skutecznym sposobem poprawy tych właściwości jest osadzanie odpowiednich warstw metodami zapewniającymi dobrą przyczepność do podłoża w temperaturze nie przekraczającej temperatury mięknięcia polimeru. W pracy przedstawiono wyniki badań nad otrzymywaniem i charakterystyką warstw węglowych typu a-C:H, a-C:N:H oraz hybrydowych a-C:N:H/SiCxNy(H) na poliwęglanie, poliuretanie oraz polieteroeteroketonie metodą RFCVD. Warstwy szczelnie maskują powierzchnie polimerów i są dobrze przyczepne do podłoża dzięki wytworzeniu przed procesem osadzania międzywarstwy przez trawienie powierzchni Ar+ lub w postaci a-C:N:H. Wszystkie pierwiastki tworzące poszczególne warstwy występują w postaci związanej w ugrupowaniach węgiel-wodór, węgiel-azot, węgiel-węgiel, azot-wodór, węgiel-wodór, a w a-C:N:H/SiCxNy(H) dodatkowo krzem-węgiel, krzem- -azot, krzem-wodór. Modyfikacja prowadzi do znaczącej poprawy właściwości mechanicznych polimerów. Najlepsze efekty osiąga się w przypadku warstw zawierających krzem.
EN
Topics of this work is to determine the operational properties of polymers, a group of materials which are currently replacing in technique metals and its alloys, glass and ceramics. An important advantage of this materials in these applications is their low specific weight, corrosion resistance, the ability to easy and low cost forming for example mechanical components. Polymers are good materials on seals, shock absorbers, components used in aerospace, chemical, electrical and automotive industries. Certain restrictions on its use due to their poor surface properties such as low hardness, low resistance to abrasion and scratching. An effective way to improve insufficient properties is deposition on their surface layer with good adhesion to the substrate at temperatures not exceeding the softening temperature of the polymer. The paper presents results of research on obtaining and characterization of carbon layers a-C:H, a-C:N:H and hybrid a-C:N:H/SiCxNy(H) on polycarbonate, polyurethane and polieteroeteroketonie by RFCVD. The layers obtained in this process tightly covered polymers and are well adhesive to the substrate because of formation interlayer during etching by Ar+ ions or in the form of a-C:N:H. All the elements forming the individual layers are bonded in groupings of carbon-hydrogen, carbon-nitrogen, carboncarbon, nitrogen, hydrogen, carbon-hydrogen and in a-C:N:H/SiCxNy(H) additional silicon-carbon, silicon, nitrogen, silicon-hydrogen. The modification leads to significant improvement in mechanical properties of polymers, with the best results are achieved in the case of layer containing silicon.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.