Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  carbide filler
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Micro-machining of UHMWPE composites reinforced with carbide fillers
100%
EN
Polymer matrix composites (PMCs) have become one of the most widely used engineering materials due to both the developments in polymers and advanced fillers. It is expected that polymer composites will take their final shape during the production phase, which means that they are not required to undergo new processes. However, in some applications, machining operations, such as turning, milling, grooving and hole drilling, cannot be avoided and thus, finishing operations must be applied to these materials. Since these materials have complex microstructures, finishing operations may cause situations that adversely affect engineering properties, such as matrix cracking, delamination, debonding, etc. In this study, micro-milling operations were performed for recently developed ceramic reinforced polymer composites. Three different spindle speeds were used while feed rate and cutting depth were kept constant in the operations. The composites were produced from powdered UHMWPE and silicon carbide particles. Several parameters were varied in the production of the composites, such as molding pressure, filler loading and filler size. The investigated outputs were cutting temperature and surface roughness, whereas machined surfaces and chip morphologies were also investigated via microscopy analyses. In the final stage, regression analyses were performed to investigate the relationships between the process parameters. According to the results, ceramic reinforced polymer composites exhibit different machinability properties than fiber-reinforced ones due to hard fillers and low melting point of UHMWPE.
2
100%
EN
Ultra-high molecular weight polyethylene (UHMWPE) is one of important materials utilized against impacting threats. In this work, bulk UHMWPE specimens were fabricated in a compression molding chamber, and molding parameters such as pressure and temperature were varied in the specimen preparation stage to investigate the effect of molding parameters on the impact performance. In addition, silicon carbide fillers were included in the UHMWPE matrix to enhance the anti-impact properties of the specimens. From the results, high molding pressure provides enhanced impact resistance due to improved microstructural consolidation. On the other hand, molding temperature just above the melting point of polymer is much beneficial to the anti-impact behavior of the structures. Carbide fillers lead to an increase in the frictional interaction between the impactor and composites and thereby enhancing the impact resistance of the structures. However, the gain in the protective properties performance is restricted up to a certain amount of carbide loading because at higher filler ratios, the composites change from ductile to brittle characteristics. For this reason, crack growth susceptibility develops in the composites at excessive carbide loadings.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.