Purpose: The paper aimed at determining the strength of modified bone cement microstructure. Modification with aqueous hormone solution stimulates the growth of bone at a hip-joint endoprosthesis implantation site. Design/methodology/approach: In the first place, microstructure of modified cements was examined. This examination was a basis for statistical description of porosity obtained as a result of modification. Statistical data were used to create microstructure models in a programme being in agreement with FEM technique. Simulations were carried out on structures of 2 types of pores, i.e. those containing water and empty ones. Findings: Modification with aqueous solutions of modifying agents affects the structure and properties of bone cements. This is caused by formation of pores filled with aqueous solutions of modifying agents. This type of porosity decreases mechanical properties less than air-filled pores. Research limitations/implications: Numerical simulation of the stress and displacement pattern in juncture microstructure should be expanded with a simulation of bone-cement-implant system operation, which will allow estimation of an optimum value of modifying agent admixture, i.e. a value enabling the improvement of juncture biocompatibility not lowering at the same time its mechanical properties below a level set up in standard specifications. Practical implications: Microstructure simulations performed confirmed a manner of modified cement cracking observed on fractures. They showed formation of pore agglomerations where concentrating stresses may bring about the appearance of dangerous micro-fractures. Originality/value: Cement modification with aqueous solution and examination of the effect of admixture on microstructure mechanical properties.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.