This paper proposes a fundus retinal blood vessel segmentation model based on a deep convolutional network structure and biological visual feature extraction mechanism. It aims to solve the multi-scale problem of blood vessels in the fundus retinal blood vessel segmentation task in the field of medical image processing on the basis of increasing the biological interpretability of the model. First, the subject feature information of the retinal blood vessel image is obtained by using the non-subsampled Residual Bolck convolution main channel. Secondly, combined with the study of biological vision mechanisms, an information processing model of the Retina-Exogenius-Primary visual cortex (V1) ventral visual pathway was established. Gabor functions of different scales are used to simulate the structure of different levels of the visual pathway, and the scale information at different levels is integrated into the corresponding hierarchical stages of the convolutional main pathway network to enrich the information of small blood vessels and enhance the semantic information of the overall blood vessels. Finally, considering the imbalance of the ratio of vessel and nonvessel pixels, an adaptive optimization scheme using hybrid loss function weights is proposed to enhance the priority of blood vessel pixels in the calculation of the loss function. According to the experimental results on the STARE, DRIVE and CHASE_DB1 data sets, the model still achieves superior performance evaluation indicators overall compared with the existing optimal methods in the fundus retinal blood vessel segmentation task. This research is of great significance to the field of medical image processing and can provide more accurate auxiliary diagnostic information for clinical diagnosis and treatment.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The morphological properties of retinal vessels are closely related to the diagnosis of ophthalmic diseases. However, many problems in retinal images, such as complicated directions of vessels and difficult recognition of capillaries, bring challenges to the accurate segmentation of retinal blood vessels. Thus, we propose a new retinal blood vessel segmentation method based on a dual-channel asymmetric convolutional neural network (CNN). First, we construct the thick and thin vessel extraction module based on the morphological differences in retinal vessels. A two-dimensional (2D) Gabor filter is used to perceive the scale characteristics of blood vessels after selecting the direction of blood vessels; thereby, adaptively extracting the thick vessel features characterizing the overall characteristics and the thin vessel features preserving the capillaries from fundus images. Then, considering that the single-channel network is unsuitable for the unified characterization of thick and thin vessels, we develop a dual-channel asymmetric CNN based on the U-Net model. The MainSegment-Net uses the step-by-step connection mode to achieve rapid positioning and segmentation of thick vessels; the FineSegment-Net combines dilated convolution and the skip connection to achieve the fine extraction of thin vessels. Finally, the output of the dual-channel asymmetric CNN is fused and coded to combine the segmentation results of thick and thin vessels. The performance of our method is evaluated and tested by DRIVE and CHASE_DB1. The results show that the accuracy (Acc), sensitivity (SE), and specificity (SP) of our method on the DRIVE database are 0.9630, 0.8745, and 0.9823, respectively. The evaluation indexes Acc, SE, and SP of the CHASE_DB1 database are 0.9694, 0.8916, and 0.9794, respectively. Additionally, our method combines the biological vision mechanism with deep learning to achieve rapid and automatic segmentation of retinal vessels, providing a new idea for diagnosing and analyzing subsequent medical images.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the last years, image processing has been an important tool for health care. The analysis of retinal vessel images has become crucial to achieving a better diagnosis and treatment for several cardiovascular and ophthalmological deceases. Therefore, an automatic and accurate procedure for retinal vessel and optic disc segmentation is essential for illness detection. This task is extremely hard and time-consuming, often requiring the assistance of human experts with a high degree of professional skills. Several retinal vessel segmentation methods have been developed with satisfactory results. Nevertheless, most of such techniques present a poor performance mainly due to the complex structure of vessels in retinal images. In this paper, an accurate methodology for retinal vessel and optic disc segmentation is presented. The proposed scheme combines two different techniques: the Lateral Inhibition (LI) and the Differential Evolution (DE). The LI scheme produces a new image with enhanced contrast between the background and retinal vessels. Then, the DE algorithm is used to obtain the appropriate threshold values through the minimization of the cross-entropy function from the enhanced image. To evaluate the performance of the proposed approach, several experiments over images extracted from STARE, DRIVE, and DRISHTI-GS databases have been conducted. Simulation results demonstrate a high performance of the proposed scheme in comparison with similar methods reported in the literature.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.