Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  biomedical measurements
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Technika pomiarowa w medycynie - problemy dydaktyki
100%
|
|
tom z. 98
251-255
PL
Program przedmiotu "Technika pomiarowa w medycynie" prowadzonego dla specjalności Metrologia i Systemy Pomiarowe prezentuje zagadnienia wybrane z dziedziny pomiarów biomedycznych, uzupełniające edukację inżyniera metrologa. W wykładzie skupiono się na pomiarach organizmów żywych, napotykanych przy tym ograniczeniach i zakłóceniach oraz bezpieczeństwie obiektu. Ćwiczenia laboratoryjne ilustrujące problemy przetwarzania sygnałów biomedycznych uzupełniają wykład.
EN
Author has lectured on Medical Measurements on IX semester of speciality Metrology and Measurement Systems, faculty of Electrotechnics and Computer Science for 6 years. Some didactic problems which earlier author has had to consider are included in the paper: the aim of lecture, its content, and the level of details of the subject. Moreover the ideas and assumptions for the project of the laboratory stands are presented.
2
Content available remote Predicting blood glucose using an LSTM neural network
70%
EN
Diabetes self-management relies on the blood glucose prediction as it allows taking suitable actions to prevent low or high blood glucose level. In this paper, we propose a deep learning neural network model for blood glucose prediction. The model is a sequential one using a Long- Short-Term Memory (LSTM) layer with two fully connected layers. Several experiments were carried out over data of 10 diabetic patients to decide on the model's parameters in order to identify the best variant of the model. The performance of the proposed model measured in terms of root mean square error (RMSE) was compared with the ones of an existing LSTM model and an autoregressive (AR) model. The results show that our model is significantly more accurate; in fact, our LSTM model outperforms the existing LSTM model for all patients and outperforms the AR model in 9 over 10 patients, besides, the performance differences were assessed by thWilcoxon statistical test. Furthermore, the mean of the RMSE of our model was 12.38 mg/dl while it was 28.84 mg/dl and 50.69 mg/dl for AR and the existing LSTM respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.